[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

New Races in Parameterized Algorithmics

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

  • 1569 Accesses

Abstract

Once having classified an NP-hard problem fixed-parameter tractable with respect to a certain parameter, the race for the most efficient fixed-parameter algorithm starts. Herein, the attention usually focuses on improving the running time factor exponential in the considered parameter, and, in case of kernelization algorithms, to improve the bound on the kernel size. Both from a practical as well as a theoretical point of view, however, there are further aspects of efficiency that deserve attention. We discuss several of these aspects and particularly focus on the search for “stronger parameterizations” in developing fixed-parameter algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balasundaram, B., Butenko, S., Trukhanovzu, S.: Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization 10(1), 23–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optimization 8(1), 87–96 (2011)

    Article  MathSciNet  Google Scholar 

  3. van Bevern, R.: Towards Optimal and Expressive Kernelization for d-Hitting Set. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 121–132. Springer, Heidelberg (2012)

    Google Scholar 

  4. van Bevern, R., Hartung, S., Kammer, F., Niedermeier, R., Weller, M.: Linear-Time Computation of a Linear Problem Kernel for Dominating Set on Planar Graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 194–206. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Mathematics 306(3), 337–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F.: Preprocessing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)

    Article  MathSciNet  Google Scholar 

  8. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel Bounds for Path and Cycle Problems. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 145–158. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. Journal of Computer and System Sciences 78(1), 211–220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411(40-42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011), pp. 150–159. IEEE (2011)

    Google Scholar 

  15. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On Multiway Cut Parameterized above Lower Bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  17. Drucker, A.: New limits to classical and quantum instance compression (2012) (manuscript, April 2012)

    Google Scholar 

  18. Dujmovic, V., Fellows, M.R., Hallett, M.T., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to 2-layer planarization. Algorithmica 45(2), 159–182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eppstein, D., Spiro, E.S.: The h-Index of a Graph and Its Application to Dynamic Subgraph Statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Erdős, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Mathematica Academiae Scientiarum Hungaricae 17, 61–99 (1966)

    Article  MathSciNet  Google Scholar 

  21. Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Fernau, H.: Two-layer planarization: Improving on parameterized algorithmics. Journal of Graph Algorithms and Applications 9(2), 205–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

    Google Scholar 

  24. Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log2 n nondeterministic bits. Journal of Computer and System Sciences 72(1), 34–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Subexponential fixed-parameter tractability of cluster editing. CoRR, abs/1112.4419 (2011)

    Google Scholar 

  26. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. Journal of Computer and System Sciences 77(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frederickson, G.N.: Approximation algorithms for some postman problems. Journal of the ACM 26(3), 538–554 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo, J.: Fixed-Parameter Algorithms for Graph-Modeled Date Clustering. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 39–48. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. Hagerup, T.: Simpler Linear-Time Kernelization for Planar Dominating Set. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 181–193. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Hartung, S., Komusiewicz, C., Nichterlein, A.: On structural parameterizations for the 2-Club problem: Classical and parameterized hardness (2012) (manuscript, June 2012)

    Google Scholar 

  31. Kawarabayashi, K., Reed, B.A.: Computing crossing number in linear time. In: Proceedings of the 39th ACM Symposium on Theory of Computing (STOC 2007), pp. 382–390. ACM (2007)

    Google Scholar 

  32. Komusiewicz, C., Uhlmann, J.: Alternative Parameterizations for Cluster Editing. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 344–355. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Applied Mathematics (2012) (online available)

    Google Scholar 

  34. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)

    MathSciNet  Google Scholar 

  35. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: LP can be a cure for parameterized problems. In: Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). LIPIcs, vol. 14, pp. 338–349. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

    Google Scholar 

  37. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Social Network Analysis and Mining (2012) (online available)

    Google Scholar 

  38. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press (2006)

    Google Scholar 

  39. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010). LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)

    Google Scholar 

  40. Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, Flowers and Vertex Cover. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 382–393. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  41. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. Journal of Computer and System Sciences 75(8), 435–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optimization Letters 6(5), 883–891 (2012)

    Article  MathSciNet  Google Scholar 

  43. Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: A new view on rural postman based on Eulerian extension and matching. Journal of Discrete Algorithms (2012) (available online)

    Google Scholar 

  44. Suderman, M.: Layered Graph Drawing. PhD thesis, School of Computer Science, McGill University (2005)

    Google Scholar 

  45. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms 6(2) (2010)

    Google Scholar 

  46. Uhlmann, J.: Multivariate Algorithmics in Biological Data Analysis. PhD thesis, Technische Universität Berlin, Berlin, Germany (2011)

    Google Scholar 

  47. Uhlmann, J., Weller, M.: Two-Layer Planarization Parameterized by Feedback Edge Set. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 431–442. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  48. Weller, M.: An improved branching algorithm for two-layer planarization parameterized by the feedback edge set number (manuscript, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Komusiewicz, C., Niedermeier, R. (2012). New Races in Parameterized Algorithmics. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics