[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Robust Set Problem: Parameterized Complexity and Approximation

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

In this paper, we introduce the Robust Set problem: given a graph G = (V,E), a threshold function t:V → N and an integer k, find a subset of vertices V′ ⊆ V of size at least k such that every vertex v in G has less than t(v) neighbors in V′. This problem occurs in the context of the spread of undesirable agents through a network (virus, ideas, fire, …). Informally speaking, the problem asks to find the largest subset of vertices with the property that if anything bad happens in it then this will have no consequences on the remaining graph. The threshold t(v) of a vertex v represents its reliability regarding its neighborhood; that is, how many neighbors can be infected before v gets himself infected.

We study in this paper the parameterized complexity of Robust Set and the approximation of the associated maximization problem. When the parameter is k, we show that this problem is W[2]-complete in general and W[1]-complete if all thresholds are constant bounded. Moreover, we prove that, if P ≠ NP, the maximization version is not n 1 − ε- approximable for any ε > 0 even when all thresholds are at most two. When each threshold is equal to the degree of the vertex, we show that k -Robust Set is fixed-parameter tractable for parameter k and the maximization version is APX-complete. We give a polynomial-time algorithm for graphs of bounded treewidth and a PTAS for planar graphs. Finally, we show that the parametric dual problem (n − k)-Robust Set is fixed-parameter tractable for a large family of threshold functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aazami, A., Stilp, M.D.: Approximation Algorithms and Hardness for Domination with Propagation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 1–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41(1), 153–180 (1994)

    Article  MATH  Google Scholar 

  3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of Target Set Selection. Discrete Optimization 8(1), 87–96 (2011)

    Article  MathSciNet  Google Scholar 

  4. Berman, P., Karpinski, M.: On Some Tighter Inapproximability Results. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and System Sciences 67(4), 654–685 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chalermsook, P., Chuzhoy, J.: Resource minimization for fire containment. In: Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1334–1349 (2010)

    Google Scholar 

  8. Chen, N.: On the approximability of influence in social networks. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1029–1037 (2008)

    Google Scholar 

  9. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Networks 10(3), 211–219 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoretical Computer Science 141(1-2), 109–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)

    Book  Google Scholar 

  12. Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics 157(7), 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. The Australasian Journal of Combinatorics 43, 57–77 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Golovach, P.A., Kratochvil, J., Suchý, O.: Parameterized complexity of generalized domination problems. Discrete Applied Mathematics 160(6), 780–792 (2012)

    Article  MATH  Google Scholar 

  15. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)

    Google Scholar 

  16. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Transactions on Knowledge Discovery from Data 3(2), 9:1–9:23 (2009)

    Article  Google Scholar 

  17. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On Tractable Cases of Target Set Selection. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 378–389. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

    Google Scholar 

  19. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazgan, C., Chopin, M. (2012). The Robust Set Problem: Parameterized Complexity and Approximation. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics