Abstract
In this paper, we introduce the Robust Set problem: given a graph G = (V,E), a threshold function t:V → N and an integer k, find a subset of vertices V′ ⊆ V of size at least k such that every vertex v in G has less than t(v) neighbors in V′. This problem occurs in the context of the spread of undesirable agents through a network (virus, ideas, fire, …). Informally speaking, the problem asks to find the largest subset of vertices with the property that if anything bad happens in it then this will have no consequences on the remaining graph. The threshold t(v) of a vertex v represents its reliability regarding its neighborhood; that is, how many neighbors can be infected before v gets himself infected.
We study in this paper the parameterized complexity of Robust Set and the approximation of the associated maximization problem. When the parameter is k, we show that this problem is W[2]-complete in general and W[1]-complete if all thresholds are constant bounded. Moreover, we prove that, if P ≠ NP, the maximization version is not n 1 − ε- approximable for any ε > 0 even when all thresholds are at most two. When each threshold is equal to the degree of the vertex, we show that k -Robust Set is fixed-parameter tractable for parameter k and the maximization version is APX-complete. We give a polynomial-time algorithm for graphs of bounded treewidth and a PTAS for planar graphs. Finally, we show that the parametric dual problem (n − k)-Robust Set is fixed-parameter tractable for a large family of threshold functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aazami, A., Stilp, M.D.: Approximation Algorithms and Hardness for Domination with Propagation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 1–15. Springer, Heidelberg (2007)
Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41(1), 153–180 (1994)
Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of Target Set Selection. Discrete Optimization 8(1), 87–96 (2011)
Berman, P., Karpinski, M.: On Some Tighter Inapproximability Results. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)
Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and System Sciences 67(4), 654–685 (2003)
Chalermsook, P., Chuzhoy, J.: Resource minimization for fire containment. In: Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1334–1349 (2010)
Chen, N.: On the approximability of influence in social networks. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1029–1037 (2008)
Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Networks 10(3), 211–219 (1980)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoretical Computer Science 141(1-2), 109–131 (1995)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)
Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics 157(7), 1615–1627 (2009)
Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. The Australasian Journal of Combinatorics 43, 57–77 (2009)
Golovach, P.A., Kratochvil, J., Suchý, O.: Parameterized complexity of generalized domination problems. Discrete Applied Mathematics 160(6), 780–792 (2012)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)
Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Transactions on Knowledge Discovery from Data 3(2), 9:1–9:23 (2009)
Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On Tractable Cases of Target Set Selection. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 378–389. Springer, Heidelberg (2010)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazgan, C., Chopin, M. (2012). The Robust Set Problem: Parameterized Complexity and Approximation. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-32589-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32588-5
Online ISBN: 978-3-642-32589-2
eBook Packages: Computer ScienceComputer Science (R0)