Abstract
The Traveling Salesman Problem is one of the most studied problems in computational complexity and its approximability has been a long standing open question. Currently, the best known inapproximability threshold known is \(\frac{220}{219}\) due to Papadimitriou and Vempala. Here, using an essentially different construction and also relying on the work of Berman and Karpinski on bounded occurrence CSPs, we give an alternative and simpler inapproximability proof which improves the bound to \(\frac{185}{184}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berman, P., Karpinski, M.: On Some Tighter Inapproximability Results (Extended Abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)
Berman, P., Karpinski, M.: Efficient amplifiers and bounded degree optimization. Electronic Colloquium on Computational Complexity (ECCC) 8(53) (2001)
Berman, P., Karpinski, M.: Improved approximation lower bounds on small occurrence optimization. Electronic Colloquium on Computational Complexity (ECCC) 10(008) (2003)
Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000)
Engebretsen, L.: An explicit lower bound for TSP with distances one and two. Algorithmica 35(4), 301–318 (2003)
Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Ostrovsky [12], pp. 550–559
Håstad, J.: Some optimal inapproximability results. Journal of the ACM (JACM) 48(4), 798–859 (2001)
Karpinski, M., Schmied, R.: On approximation lower bounds for TSP with bounded metrics. CoRR, abs/1201.5821 (2012)
Lampis, M.: Improved Inapproximability for TSP. CoRR, abs/1206.2497 (2012)
Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Ostrovsky [12], pp. 560–569
Mucha, M.: 13/9-approximation for graphic TSP. In: Dürr, C., Wilke, T. (eds.) STACS. LIPIcs, vol. 14, pp. 30–41. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)
Ostrovsky, R. (ed.): IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25. IEEE (2011)
Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem (extended abstract). In: Yao, F.F., Luks, E.M. (eds.) STOC, pp. 126–133. ACM (2000)
Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26(1), 101–120 (2006)
Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Mathematics of Operations Research, 1–11 (1993)
Sebö, A., Vygen, J.: Shorter tours by nicer ears: CoRR, abs/1201.1870 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lampis, M. (2012). Improved Inapproximability for TSP. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-32512-0_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32511-3
Online ISBN: 978-3-642-32512-0
eBook Packages: Computer ScienceComputer Science (R0)