[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

The Traveling Salesman Problem is one of the most studied problems in computational complexity and its approximability has been a long standing open question. Currently, the best known inapproximability threshold known is \(\frac{220}{219}\) due to Papadimitriou and Vempala. Here, using an essentially different construction and also relying on the work of Berman and Karpinski on bounded occurrence CSPs, we give an alternative and simpler inapproximability proof which improves the bound to \(\frac{185}{184}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berman, P., Karpinski, M.: On Some Tighter Inapproximability Results (Extended Abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Berman, P., Karpinski, M.: Efficient amplifiers and bounded degree optimization. Electronic Colloquium on Computational Complexity (ECCC) 8(53) (2001)

    Google Scholar 

  3. Berman, P., Karpinski, M.: Improved approximation lower bounds on small occurrence optimization. Electronic Colloquium on Computational Complexity (ECCC) 10(008) (2003)

    Google Scholar 

  4. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Engebretsen, L.: An explicit lower bound for TSP with distances one and two. Algorithmica 35(4), 301–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Ostrovsky [12], pp. 550–559

    Google Scholar 

  7. Håstad, J.: Some optimal inapproximability results. Journal of the ACM (JACM) 48(4), 798–859 (2001)

    Article  MATH  Google Scholar 

  8. Karpinski, M., Schmied, R.: On approximation lower bounds for TSP with bounded metrics. CoRR, abs/1201.5821 (2012)

    Google Scholar 

  9. Lampis, M.: Improved Inapproximability for TSP. CoRR, abs/1206.2497 (2012)

    Google Scholar 

  10. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Ostrovsky [12], pp. 560–569

    Google Scholar 

  11. Mucha, M.: 13/9-approximation for graphic TSP. In: Dürr, C., Wilke, T. (eds.) STACS. LIPIcs, vol. 14, pp. 30–41. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

    Google Scholar 

  12. Ostrovsky, R. (ed.): IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25. IEEE (2011)

    Google Scholar 

  13. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem (extended abstract). In: Yao, F.F., Luks, E.M. (eds.) STOC, pp. 126–133. ACM (2000)

    Google Scholar 

  14. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26(1), 101–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Mathematics of Operations Research, 1–11 (1993)

    Google Scholar 

  16. Sebö, A., Vygen, J.: Shorter tours by nicer ears: CoRR, abs/1201.1870 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lampis, M. (2012). Improved Inapproximability for TSP. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics