[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Image Forensics of High Dynamic Range Imaging

  • Conference paper
Digital Forensics and Watermarking (IWDW 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7128))

Included in the following conference series:

Abstract

This paper introduces a novel area of research to the Image Forensic field; identifying High Dynamic Range (HDR) digital images. We create a test set of images that are a combination of HDR and standard images of similar scenes. We also propose a scheme to isolate fingerprints of the HDR-induced haloing artifact at “strong” edge positions, and present experimental results in extracting suitable features for a successful SVM-driven classification of edges from HDR and standard images. A majority vote of this output is then utilised to complete a highly accurate classification system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification From Sensor Pattern Noise. IEEE Transactions on Information Security and Forensics 1(2), 205–214 (2006)

    Article  Google Scholar 

  2. Choi, K.S., Lam, E.Y., Wong, K.K.Y.: Source Camera Identification Using Footprints From Lens Aberration. In: Proceedings of the SPIE, vol. 6069, pp. 172–179 (2006)

    Google Scholar 

  3. Bayram, S., Sencar, H.T., Memon, N., Avcibas, I.: Source Camera Identification Based on CFA Interpolation. In: Proceedings of IEEE ICIP, vol. 3, pp. 69–72 (2005)

    Google Scholar 

  4. Celiktutan, O., Avcibas, I., Sankur, B., Memon, N.: Source Cell-phone Identification. In: IEEE Signal Processing and Communications Applications, pp. 1–3 (2005)

    Google Scholar 

  5. Long, Y., Huang, Y.: Image Based Source Camera Identification using Demosaicking. In: IEEE 8th Workshop on Multimedia Signal Processing, pp. 419–424 (2006)

    Google Scholar 

  6. Kharrazi, M., Sencar, H.T., Memon, N.: Blind Source Camera Identification. In: International Conference on Image Processing, vol. 1, pp. 709–712 (2004)

    Google Scholar 

  7. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21, pp. 249–256 (2002)

    Google Scholar 

  8. Mantiuk, R., Myszkowski, K., Seidel, H.P.: A Perceptual Framework for Contrast Processing of High Dynamic Range Images. ACM Transactions on Applied Perception 3, 286–308 (2006)

    Article  Google Scholar 

  9. Krawczyk, G., Myszkowski, K., Seidel, H.P.: Computational Model of Lightness Perception in High Dynamic Range Imaging. In: Human Vision and Electronic Imaging XI, IS&T/SPIE’s 18th Annual Symposium on Electronic Imaging (2006)

    Google Scholar 

  10. Qiu, G., Guan, J., Duan, J., Chen, M.: Tone Mapping for HDR Image using Optimization A New Closed Form Solution. In: 18th International Conference on Pattern Recognition, pp. 996–999 (2006)

    Google Scholar 

  11. Oppenheim, A.V., Schafer, R., Stockham, T.: Nonlinear Filtering of Multiplied and Convolved Signals. Proceedings of the IEEE 56(8), 1264–1291 (1968)

    Article  Google Scholar 

  12. Debevec, P., Yu, Y., Borshukov, G.D.: Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping. In: Eurographics Rendering Workshop, pp. 105–116 (1998)

    Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall (2007) ISBN: 978-0-13-168728-8

    Google Scholar 

  14. Russ, J.C.: Forensic Uses of Digital Imaging. CRC Press (2001) ISBN: 978-0-84-930903-8

    Google Scholar 

  15. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kauffman (2005) ISBN: 978-0-12-585263-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bateman, P.J., Ho, A.T.S., Briffa, J.A. (2012). Image Forensics of High Dynamic Range Imaging. In: Shi, Y.Q., Kim, HJ., Perez-Gonzalez, F. (eds) Digital Forensics and Watermarking. IWDW 2011. Lecture Notes in Computer Science, vol 7128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32205-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32205-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32204-4

  • Online ISBN: 978-3-642-32205-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics