Abstract
This paper introduces a novel area of research to the Image Forensic field; identifying High Dynamic Range (HDR) digital images. We create a test set of images that are a combination of HDR and standard images of similar scenes. We also propose a scheme to isolate fingerprints of the HDR-induced haloing artifact at “strong” edge positions, and present experimental results in extracting suitable features for a successful SVM-driven classification of edges from HDR and standard images. A majority vote of this output is then utilised to complete a highly accurate classification system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification From Sensor Pattern Noise. IEEE Transactions on Information Security and Forensics 1(2), 205–214 (2006)
Choi, K.S., Lam, E.Y., Wong, K.K.Y.: Source Camera Identification Using Footprints From Lens Aberration. In: Proceedings of the SPIE, vol. 6069, pp. 172–179 (2006)
Bayram, S., Sencar, H.T., Memon, N., Avcibas, I.: Source Camera Identification Based on CFA Interpolation. In: Proceedings of IEEE ICIP, vol. 3, pp. 69–72 (2005)
Celiktutan, O., Avcibas, I., Sankur, B., Memon, N.: Source Cell-phone Identification. In: IEEE Signal Processing and Communications Applications, pp. 1–3 (2005)
Long, Y., Huang, Y.: Image Based Source Camera Identification using Demosaicking. In: IEEE 8th Workshop on Multimedia Signal Processing, pp. 419–424 (2006)
Kharrazi, M., Sencar, H.T., Memon, N.: Blind Source Camera Identification. In: International Conference on Image Processing, vol. 1, pp. 709–712 (2004)
Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21, pp. 249–256 (2002)
Mantiuk, R., Myszkowski, K., Seidel, H.P.: A Perceptual Framework for Contrast Processing of High Dynamic Range Images. ACM Transactions on Applied Perception 3, 286–308 (2006)
Krawczyk, G., Myszkowski, K., Seidel, H.P.: Computational Model of Lightness Perception in High Dynamic Range Imaging. In: Human Vision and Electronic Imaging XI, IS&T/SPIE’s 18th Annual Symposium on Electronic Imaging (2006)
Qiu, G., Guan, J., Duan, J., Chen, M.: Tone Mapping for HDR Image using Optimization A New Closed Form Solution. In: 18th International Conference on Pattern Recognition, pp. 996–999 (2006)
Oppenheim, A.V., Schafer, R., Stockham, T.: Nonlinear Filtering of Multiplied and Convolved Signals. Proceedings of the IEEE 56(8), 1264–1291 (1968)
Debevec, P., Yu, Y., Borshukov, G.D.: Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping. In: Eurographics Rendering Workshop, pp. 105–116 (1998)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall (2007) ISBN: 978-0-13-168728-8
Russ, J.C.: Forensic Uses of Digital Imaging. CRC Press (2001) ISBN: 978-0-84-930903-8
Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kauffman (2005) ISBN: 978-0-12-585263-0
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bateman, P.J., Ho, A.T.S., Briffa, J.A. (2012). Image Forensics of High Dynamic Range Imaging. In: Shi, Y.Q., Kim, HJ., Perez-Gonzalez, F. (eds) Digital Forensics and Watermarking. IWDW 2011. Lecture Notes in Computer Science, vol 7128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32205-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-32205-1_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32204-4
Online ISBN: 978-3-642-32205-1
eBook Packages: Computer ScienceComputer Science (R0)