Abstract
For visual cryptography scheme (VCS), normally, the size of the recovered secret image will be expanded by m( ≥ 1) times of the original secret image. In most cases, m is not a square number, hence the recovered secret image will be distorted. Sometimes, m is too large that will bring much inconvenience to the participants to carry the share images. In this paper, we propose a visual cryptography scheme which simulated the principle of fountains. The proposed scheme has two advantages: non-distortion and flexible (with respect to the pixel expansion). Furthermore, the proposed scheme can be applied to any VCS that is under the pixel by pixel encryption model, such as VCS for general access structure, color VCS and extended VCS, and our VCS does not restrict to any specific underlying operation. Compared with other non-distortion schemes, the proposed scheme is more general and simpler, real flexible and has competitive visual quality for the recovered secret image.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)
Droste, S.: New Results on Visual Cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996)
Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography schemes. Journal of Cryptology 12(4), 261–289 (1999)
Cimato, S., De Prisco, R., De Santis, A.: Optimal colored threshold visual cryptography schemes. Designs, Codes and Cryptography 35, 311–335 (2005)
Krause, M., Simon, H.U.: Determining the optimal contrast for secret sharing schemes in visual cryptography. Combinatorics, Probability & Computing 12(3), 285–299 (2003)
Viet, D.Q., Kurosawa, K.: Almost Ideal Contrast Visual Cryptography with Reversing. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 353–365. Springer, Heidelberg (2004)
Koga, H.: A General Formula of the (t,n)-Threshold Visual Secret Sharing Scheme. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 328–345. Springer, Heidelberg (2002)
Bose, M., Mukerjee, R.: Optimal (k,n) visual cryptographic schemes for general k. Designs, Codes and Cryptography 55, 19–35 (2010)
Liu, F., Wu, C.K.: Embedded meaningful share visual cryptography schemes. IEEE Transactions on Information Forensics & Security 6(2), 307–322 (2011)
Liu, F., Wu, C.K., Lin, X.J.: Step construction of visual cryptography schemes. IEEE Transactions on Information Forensics & Security 5(1), 27–38 (2010)
Liu, F., Wu, C.K., Lin, X.J.: A new definition of the contrast of visual cryptography scheme. Information Processing Letters 110, 241–246 (2010)
Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Information and Computation 129, 86–106 (1996)
Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended capabilities for visual cryptography. ACM Theoretical Computer Science 250(1-2), 143–161 (2001)
Zhou, Z., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography. In: Proceedings of 2003 International Conference on Image Processing, vol. 1, pp. I–521–I–524 (2003)
Surekha, B., Swamy, G., Rao, K.S.: A multiple watermarking technique for images based on visual cryptography. Computer Applications 1, 77–81 (2010)
Monoth, T., Babu Anto, P.: Tamperproof transmission of fingerprints using visual cryptography schemes. Procedia Computer Science 2, 143–148 (2010)
Weir, J., Yan, W.: Resolution variant visual cryptography for street view of google maps. In: Proceedings of the ISCAS, pp. 1695–1698 (2010)
Cimato, S., Yang, C.N.: Visual cryptography and secret image sharing. CRC Press, Taylor & Francis (2011)
Yang, C.N., Chen, T.S.: Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion. Pattern Recognition Letters 26, 193–206 (2005)
Yang, C.N., Chen, T.S.: Reduce shadowsize in aspect ratio invariant visual secret sharing schemes using a square block-wise operation. Pattern Recognition 39, 1300–1314 (2006)
Hou, Y.C., Tu, C.F.: Visual cryptography techniques for color images without pixel expansion. Journal of Information, Technology and Society 1, 95–110 (2004) (in Chinese)
Ito, R., Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science E82-A(10), 2172–2177 (1999)
Cimato, S., De Prisco, R., De Santis, A.: Probabilistic visual cryptography schemes. The Computer Journal 49(1), 97–107 (2006)
Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recognition Letters 25, 481–494 (2004)
Yang, C.N., Chen, T.S.: Visual secret sharing scheme: prioritizing the secret pixels with different pixel expansions to enhance the image contrast. Optical Engineering 46(9), 097005 (2007)
Liu, F., Wu, C.K., Lin, X.J.: The alignment problem of visual cryptography schemes. Designs, Codes and Cryptography 50, 215–227 (2009)
Biham, E., Itzkovitz, A.: Visual cryptography with polarization. In: The Dagstuhl seminar on Cryptography, and in the RUMP session of CRYPTO 1998 (September 1997)
Kuwakado, H., Tanaka, H.: Size-reduced visual secret sharing scheme. IEICE Transactions on Fundamentals E87-A(5), 1193–1197 (2004)
Yang, C.N., Chen, T.S.: Size-adjustable visual secret sharing schemes. IEICE Transactions on Fundamentals E88-A(9), 2471–2474 (2005)
Yang, C.N., Chen, T.S.: New size-reduced visual secret sharing schemes with half reduction of shadow size. IEICE Transactions on Fundamentals E89-A(2), 620–625 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, F., Guo, T., Wu, C., Yang, CN. (2012). Flexible Visual Cryptography Scheme without Distortion. In: Shi, Y.Q., Kim, HJ., Perez-Gonzalez, F. (eds) Digital Forensics and Watermarking. IWDW 2011. Lecture Notes in Computer Science, vol 7128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32205-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-32205-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32204-4
Online ISBN: 978-3-642-32205-1
eBook Packages: Computer ScienceComputer Science (R0)