[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-valued Approach to Near Set Theory

  • Chapter
Transactions on Rough Sets XV

Abstract

The aim of this paper is to introduce three approaches to near sets by using a multi-valued system. Some fundamental properties and characterizations are given. We obtain a comparison among these types of approximations. The contribution of this paper is to form basis for the discovery of perceptual objects that are descriptively near each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abd El-Monsef, M.E., Kozae, A.M., Iqelan, M.J.: Near Approximations in Topological Spaces. Int. Journal of Math. Analysis 4(6), 279–290 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Abu-Donia, H.M., Nasef, A.A., Marei, E.A.: Finite Information Systems. Applied Mathematics and Information Sciences 1(1), 13–21 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-neuro Computing: Techniques for Computing with Words, pp. 157–184. Springer, Berlin (2004)

    Chapter  Google Scholar 

  4. Duntsch, I.: A logic for rough sets. Theoretical Computer Science 179, 427–436 (1997)

    Article  MathSciNet  Google Scholar 

  5. Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach to knowledge discovery. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 513–552. Springer, Berlin (2004)

    Google Scholar 

  6. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (eds.): Feature Extraction. Foundations and Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, UK (2003)

    MATH  Google Scholar 

  8. Pawlak, Z.: Rough sets. Int. J. of Computer and Information Sciences (11), 341–356 (1982)

    Google Scholar 

  9. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peters, J.F., Henry, C., Ramanna, S.: Rough Ethograms: Study of Intelligent System behaviour. In: Klopotek, M.A., Wierzchón, S., Trojanowski, K. (eds.) New Trends in Intelligent Information Processing and Web Mining (IIS 2005), Gdánsk, Poland, pp. 117–126 (2005)

    Google Scholar 

  11. Peters, J.F.: Classification of objects by means of features. In: Proc. IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI 2007), Honolulu, Hawaii, pp. 1–8 (2007)

    Google Scholar 

  12. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of Objects: Extension of Approximation Space Model. Fundamenta Informaticae 79, 1–24 (2007)

    MathSciNet  Google Scholar 

  13. Peters, J.F.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae 76, 1–28 (2007)

    Google Scholar 

  14. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. In: Lindemann, G., Schlilngloff, H., et al. (eds.) Proc. Concurrency, Specification & Programming (CS&P 2006). Informatik-Berichte Nr. 206, pp. 434–445. Humboldt-Universitat zu, Berlin (2006)

    Google Scholar 

  15. Wiweger, A.: On topological rough sets. Bull, Pol. Acad., Math. 37, 89–93 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abd El-Monsef, M.E., Abu-Donia, H.M., Marei, E.A. (2012). Multi-valued Approach to Near Set Theory. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets XV. Lecture Notes in Computer Science, vol 7255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31903-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31903-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31902-0

  • Online ISBN: 978-3-642-31903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics