Abstract
The aim of this paper is to introduce three approaches to near sets by using a multi-valued system. Some fundamental properties and characterizations are given. We obtain a comparison among these types of approximations. The contribution of this paper is to form basis for the discovery of perceptual objects that are descriptively near each other.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abd El-Monsef, M.E., Kozae, A.M., Iqelan, M.J.: Near Approximations in Topological Spaces. Int. Journal of Math. Analysis 4(6), 279–290 (2010)
Abu-Donia, H.M., Nasef, A.A., Marei, E.A.: Finite Information Systems. Applied Mathematics and Information Sciences 1(1), 13–21 (2007)
Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-neuro Computing: Techniques for Computing with Words, pp. 157–184. Springer, Berlin (2004)
Duntsch, I.: A logic for rough sets. Theoretical Computer Science 179, 427–436 (1997)
Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach to knowledge discovery. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 513–552. Springer, Berlin (2004)
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (eds.): Feature Extraction. Foundations and Applications. Springer, Berlin (2006)
MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, UK (2003)
Pawlak, Z.: Rough sets. Int. J. of Computer and Information Sciences (11), 341–356 (1982)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)
Peters, J.F., Henry, C., Ramanna, S.: Rough Ethograms: Study of Intelligent System behaviour. In: Klopotek, M.A., Wierzchón, S., Trojanowski, K. (eds.) New Trends in Intelligent Information Processing and Web Mining (IIS 2005), Gdánsk, Poland, pp. 117–126 (2005)
Peters, J.F.: Classification of objects by means of features. In: Proc. IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI 2007), Honolulu, Hawaii, pp. 1–8 (2007)
Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of Objects: Extension of Approximation Space Model. Fundamenta Informaticae 79, 1–24 (2007)
Peters, J.F.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae 76, 1–28 (2007)
Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. In: Lindemann, G., Schlilngloff, H., et al. (eds.) Proc. Concurrency, Specification & Programming (CS&P 2006). Informatik-Berichte Nr. 206, pp. 434–445. Humboldt-Universitat zu, Berlin (2006)
Wiweger, A.: On topological rough sets. Bull, Pol. Acad., Math. 37, 89–93 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Abd El-Monsef, M.E., Abu-Donia, H.M., Marei, E.A. (2012). Multi-valued Approach to Near Set Theory. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets XV. Lecture Notes in Computer Science, vol 7255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31903-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-31903-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31902-0
Online ISBN: 978-3-642-31903-7
eBook Packages: Computer ScienceComputer Science (R0)