Abstract
The article presents an approach to computational knowledge discovery through the mechanism of bisociation. Bisociative reasoning is at the heart of creative, accidental discovery (e.g., serendipity), and is focused on finding unexpected links by crossing contexts. Contextualization and linking between highly diverse and distributed data and knowledge sources is therefore crucial for the implementation of bisociative reasoning. In the article we explore these ideas on the problem of analysis of microarray data. We show how enriched gene sets are found by using ontology information as background knowledge in semantic subgroup discovery. These genes are then contextualized by the computation of probabilistic links to diverse bioinformatics resources. Preliminary experiments with microarray data illustrate the approach.
Chapter PDF
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. 20th Intl. Conf. on Very Large Data Bases, VLDB, Santiago, Chile, pp. 487–499 (1994)
Dubitzky, W., Kötter, T., Schmidt, O., Berthold, M.R.: Towards Creative Information Exploration Based on Koestler’s Concept of Bisociation. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250, pp. 11–32. Springer, Heidelberg (2012)
Eronen, L., Hintsanen, P., Toivonen, H.: Biomine: A Network-Structured Resource of Biological Entities for Link Prediction. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250, pp. 364–378. Springer, Heidelberg (2012)
Gamberger, D., Lavrač, N.: Expert-guided subgroup discovery: Methodology and application. Journal of Artificial Intelligence Research 17, 501–527 (2002)
Gamberger, D., Lavrač, N., Železný, F., Tolar, J.: Induction of comprehensible models for gene expression datasets by the subgroup discovery methodology. Journal of Biomedical Informatics 37, 269–284 (2004)
Juršič, M., Lavrač, N., Mozetič, I., Podpečan, V., Toivonen., H.: Constructing information networks from text documents. In: ECML/PKDD 2009 Workshop on Explorative Analytics of Information Networks, Bled, Slovenia (2009)
Kim, S.Y., Volsky, D.J.: PAGE: Parametric Analysis of Gene Set Enrichment. BMC Bioinformatics 6, 144 (2005)
Koestler, A.: The Act of Creation. The Macmillan Co., New York (1964)
Petrič, I., Urbančičc, T., Cestnik, B., Macedoni-Lukšič, M.: Literature mining method RaJoLink for uncovering relations between biomedical concepts. Journal of Biomedical Informatics 42(2), 219–227 (2009)
Podpečan, V., Lavrač, N., Mozetič, I., Kralj Novak, P., Trajkovski, I., Langohr, L., Kulovesi, K., Toivonen, H., Petek, M., Motaln, H., Gruden, K.: SegMine workflows for semantic microarray data analysis in Orange4WS. BMC Bioinformatics 12, 416 (2011)
Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link Discovery in Graphs Derived from Biological Databases. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 35–49. Springer, Heidelberg (2006)
Swanson, D.R., Smalheiser, N.R., Torvik, V.I.: Ranking indirect connections in literature-based discovery: The role of Medical Subject Headings (MeSH). JASIST 57(11), 1427–1439 (2006)
Subramanian, P., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.: Gene set enrichment analysis: A knowledge based approach for interpreting genome-wide expression profiles. Proc. of the National Academy of Science, USA 102(43), 15545–15550 (2005)
Trajkovski., I.: Functional interpretation of gene expression data. Ph.D. Thesis, Jozef Stefan International Postgraduate School, Ljubljana, Slovenia (2007)
Trajkovski, I., Železny, F., Lavrač, N., Tolar, J.: Learning relational descriptions of differentially expressed gene groups. IEEE Transactions of Systems, Man and Cybernetics C, Special Issue on Intelligent Computation for Bioinformatics 38(1), 16–25 (2008)
Trajkovski, I., Lavrač, N., Tolar, J.: SEGS: Search for enriched gene sets in microarray data. Journal of Biomedical Informatics 41(4), 588–601 (2008)
Železny, F., Lavrač, N.: Propositionalization-based relational subgroup discovery with RSD. Machine Learning 62(1-2), 33–63 (2007)
Weeber, M., Klein, H., de Jong-van den Berg, L.T.W., Vos, R.: Using concepts in literature-based discovery: Simulating Swanson’s Raynaud-fish oil and migraine-magnesium discoveries. J. Am. Soc. Inf. Sci. Tech. 52(7), 548–557 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2012 The Author(s)
About this chapter
Cite this chapter
Mozetič, I. et al. (2012). Semantic Subgroup Discovery and Cross-Context Linking for Microarray Data Analysis. In: Berthold, M.R. (eds) Bisociative Knowledge Discovery. Lecture Notes in Computer Science(), vol 7250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31830-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-31830-6_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31829-0
Online ISBN: 978-3-642-31830-6
eBook Packages: Computer ScienceComputer Science (R0)