[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox

(Tool Presentation)

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2012 (SAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7317))

Abstract

We present \(\texttt{SMT-RAT}\), a \(\texttt{C++}\) toolbox offering theory solver modules for the development of SMT solvers for nonlinear real arithmetic (NRA). NRA is an important but hard-to-solve theory and only fragments of it can be handled by some of the currently available SMT solvers. Our toolbox contains modules implementing the virtual substitution method, the cylindrical algebraic decomposition method, a Gröbner bases simplifier and a general simplifier. These modules can be combined according to a user-defined strategy in order to exploit their advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ábrahám, E., et al.: A lazy SMT-solver for a non-linear subset of real algebra. In: Proc. of SMT 2010 (2010)

    Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer (2010)

    Google Scholar 

  3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  4. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

    Article  MATH  Google Scholar 

  5. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  7. Corzilius, F., Ábrahám, E.: Virtual Substitution for SMT-Solving. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. http://cs.nyu.edu/acsys/cvc3/

  9. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving, http://research.microsoft.com/en-us/um/people/leonardo/mp-smt-strategy.pdf

  10. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulas over ordered fields. Journal of Symbolic Computation 24, 209–231 (1995)

    Article  MathSciNet  Google Scholar 

  11. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  MathSciNet  Google Scholar 

  12. Fränzle, M., et al.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4), 209–236 (2007)

    Google Scholar 

  13. Heintz, J., Roy, M.F., Solernó, P.: On the theoretical and practical complexity of the existential theory of the reals. The Computer Journal 36(5), 427–431 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Loup, U., Ábrahám, E.: GiNaCRA: A C++ Library for Real Algebraic Computations. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 512–517. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Passmore, G.O., Jackson, P.B.: Combined Decision Techniques for the Existential Theory of the Reals. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 122–137. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press (1948)

    Google Scholar 

  17. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–392. Springer (1998)

    Google Scholar 

  18. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1-2), 3–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weispfenning, V.: Quantifier elimination for real algebra – The quadratic case and beyond. Applicable Algebra in Engineering, Communication and Computing 8(2), 85–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. http://research.microsoft.com/en-us/um/redmond/projects/z3/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corzilius, F., Loup, U., Junges, S., Ábrahám, E. (2012). SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31612-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31611-1

  • Online ISBN: 978-3-642-31612-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics