Abstract
We present \(\texttt{SMT-RAT}\), a \(\texttt{C++}\) toolbox offering theory solver modules for the development of SMT solvers for nonlinear real arithmetic (NRA). NRA is an important but hard-to-solve theory and only fragments of it can be handled by some of the currently available SMT solvers. Our toolbox contains modules implementing the virtual substitution method, the cylindrical algebraic decomposition method, a Gröbner bases simplifier and a general simplifier. These modules can be combined according to a user-defined strategy in order to exploit their advantages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ábrahám, E., et al.: A lazy SMT-solver for a non-linear subset of real algebra. In: Proc. of SMT 2010 (2010)
Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer (2010)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)
Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)
Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Corzilius, F., Ábrahám, E.: Virtual Substitution for SMT-Solving. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer, Heidelberg (2011)
de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving, http://research.microsoft.com/en-us/um/people/leonardo/mp-smt-strategy.pdf
Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulas over ordered fields. Journal of Symbolic Computation 24, 209–231 (1995)
Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. SIGSAM Bulletin 31(2), 2–9 (1997)
Fränzle, M., et al.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4), 209–236 (2007)
Heintz, J., Roy, M.F., Solernó, P.: On the theoretical and practical complexity of the existential theory of the reals. The Computer Journal 36(5), 427–431 (1993)
Loup, U., Ábrahám, E.: GiNaCRA: A C++ Library for Real Algebraic Computations. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 512–517. Springer, Heidelberg (2011)
Passmore, G.O., Jackson, P.B.: Combined Decision Techniques for the Existential Theory of the Reals. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 122–137. Springer, Heidelberg (2009)
Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press (1948)
Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–392. Springer (1998)
Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1-2), 3–27 (1988)
Weispfenning, V.: Quantifier elimination for real algebra – The quadratic case and beyond. Applicable Algebra in Engineering, Communication and Computing 8(2), 85–101 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Corzilius, F., Loup, U., Junges, S., Ábrahám, E. (2012). SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-31612-8_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31611-1
Online ISBN: 978-3-642-31612-8
eBook Packages: Computer ScienceComputer Science (R0)