[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-Tilde-Bar Derivatives

  • Conference paper
Implementation and Application of Automata (CIAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7381))

Included in the following conference series:

Abstract

Multi-tilde-bar operators allow us to extend regular expressions. The associated extended expressions are compatible with the structure of Glushkov automata and they provide a more succinct representation than standard expressions. The aim of this paper is to examine the derivation of multi-tilde-bar expressions. Two types of computation are investigated: Brzozowski derivation and Antimirov derivation, as well as the construction of the associated automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite system revisited. Int. J. Found. Comput. Sci. 20(4), 669–684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155, 291–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antimirov, V.M., Mosses, P.D.: Rewriting extended regular expressions. Theor. Comput. Sci. 143(1), 51–72 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret. Comput. Sci. 48(1), 117–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzozowski, J.A.: Derivatives of regular expressions. J. Assoc. Comput. Mach. 11(4), 481–494 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brzozowski, J.A.: Quotient complexity of regular languages. Journal of Automata, Languages and Combinatorics 15(1/2), 71–89 (2010)

    Google Scholar 

  7. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theor. Comput. Sci. 10, 19–35 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caron, P., Champarnaud, J.M., Mignot, L.: Erratum to “acyclic automata and small expressions using multi-tilde-bar operators”. [Theoret. Comput. Sci. 411(38-39), 3423–3435] (2010); Theor. Comput. Sci. 412(29), 3795–3796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caron, P., Champarnaud, J.M., Mignot, L.: Multi-bar and multi-tilde regular operators. Journal of Automata, Languages and Combinatorics 16(1), 11–26 (2011)

    Google Scholar 

  10. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial Derivatives of an Extended Regular Expression. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Caron, P., Champarnaud, J.M., Mignot, L.: A general frame for the derivation of regular expressions (submitted, 2012)

    Google Scholar 

  12. Champarnaud, J.-M., Jeanne, H., Mignot, L.: Approximate Regular Expressions and Their Derivatives. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 179–191. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Champarnaud, J.M., Ouardi, F., Ziadi, D.: An efficient computation of the equation \(\mathbb{K}\)-automaton of a regular \(\mathbb{K}\)-expression. Fundam. Inform. 90(1-2), 1–16 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives, and finite automaton constructions. Theoret. Comput. Sci. 239(1), 137–163 (2002)

    Article  MathSciNet  Google Scholar 

  15. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall (1971)

    Google Scholar 

  16. Frishert, M.: FIRE Works & FIRE Station: A finite automata and regular expression playground. Ph.D. thesis, Eindhoven University, Netherlands (2005)

    Google Scholar 

  17. Ginzburg, A.: A procedure for checking equality of regular expressions. J. ACM 14(2), 355–362 (1967)

    Article  MATH  Google Scholar 

  18. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies Ann. Math. Studies 34, 3–41 (1956)

    MathSciNet  Google Scholar 

  20. Krob, D.: Differentation of K-rational expressions. Internat. J. Algebra Comput. 2(1), 57–87 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. Theor. Comput. Sci. 332(1-3), 141–177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J. Funct. Program. 19(2), 173–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sulzmann, M., Lu, K.: Partial derivative regular expression pattern matching (December 2007) (manuscript)

    Google Scholar 

  24. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. I, pp. 41–110. Springer, Berlin (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caron, P., Champarnaud, JM., Mignot, L. (2012). Multi-Tilde-Bar Derivatives. In: Moreira, N., Reis, R. (eds) Implementation and Application of Automata. CIAA 2012. Lecture Notes in Computer Science, vol 7381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31606-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31606-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31605-0

  • Online ISBN: 978-3-642-31606-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics