Abstract
We consider the careful synchronization of partial automata with only one undefined transition and the generalized synchronization of nondeterministic automata with only one ambiguous transition. For each of the two cases we prove that the problem of checking whether or not a given automaton is synchronizable is PSPACE-complete. The restrictions of these problems to 2-letter automata are also PSPACE-complete.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burkhard, H.V.: Zum Längenproblem homogener Experimente an determinierten und nicht-deterministischen Automaten. Elektronische Informationsverarbeitung und Kybernetik 12, 301–306 (1976)
Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Mat.-Fyz. Cas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in Slovak)
Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)
Gazdag, Z., Ivan, S., Nagy-Gyorgy, J.: Improved upper bounds on synchronizing nondeterministic automata. Information Processing Letters 109(17), 986–990 (2009)
Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybernetica 14, 105–115 (1999)
Imreh, B., Imreh, C., Ito, M.: On directable nondeterministic trapped automata. Acta Cybernetica 16, 37–45 (2003)
Ito, M., Shikishima-Tsuji, K.: Some Results on Directable Automata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever (Salomaa Festschrift). LNCS, vol. 3113, pp. 125–133. Springer, Heidelberg (2004)
Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore (2004)
Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pp. 254–266 (1977)
Martyugin, P.: Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata. Diskretn. Anal. Issled. Oper. 15(4), 44–56 (2008)
Martyugin, P.V.: A Lower Bound for the Length of the Shortest Carefully Synchronizing Words. Russian Mathematics (Iz. VUZ) 54(1), 46–54 (2010)
Martyugin, P.V.: Complexity of Problems Concerning Carefully Synchronizing Words for PFA and Directing Words for NFA. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 288–302. Springer, Heidelberg (2010)
Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchronizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)
Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martyugin, P.V. (2012). Synchronization of Automata with One Undefined or Ambiguous Transition. In: Moreira, N., Reis, R. (eds) Implementation and Application of Automata. CIAA 2012. Lecture Notes in Computer Science, vol 7381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31606-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-31606-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31605-0
Online ISBN: 978-3-642-31606-7
eBook Packages: Computer ScienceComputer Science (R0)