[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Synchronization of Automata with One Undefined or Ambiguous Transition

  • Conference paper
Implementation and Application of Automata (CIAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7381))

Included in the following conference series:

  • 645 Accesses

Abstract

We consider the careful synchronization of partial automata with only one undefined transition and the generalized synchronization of nondeterministic automata with only one ambiguous transition. For each of the two cases we prove that the problem of checking whether or not a given automaton is synchronizable is PSPACE-complete. The restrictions of these problems to 2-letter automata are also PSPACE-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burkhard, H.V.: Zum Längenproblem homogener Experimente an determinierten und nicht-deterministischen Automaten. Elektronische Informationsverarbeitung und Kybernetik 12, 301–306 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Mat.-Fyz. Cas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in Slovak)

    MATH  Google Scholar 

  3. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  5. Gazdag, Z., Ivan, S., Nagy-Gyorgy, J.: Improved upper bounds on synchronizing nondeterministic automata. Information Processing Letters 109(17), 986–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybernetica 14, 105–115 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Imreh, B., Imreh, C., Ito, M.: On directable nondeterministic trapped automata. Acta Cybernetica 16, 37–45 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Ito, M., Shikishima-Tsuji, K.: Some Results on Directable Automata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever (Salomaa Festschrift). LNCS, vol. 3113, pp. 125–133. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  10. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pp. 254–266 (1977)

    Google Scholar 

  11. Martyugin, P.: Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata. Diskretn. Anal. Issled. Oper. 15(4), 44–56 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Martyugin, P.V.: A Lower Bound for the Length of the Shortest Carefully Synchronizing Words. Russian Mathematics (Iz. VUZ) 54(1), 46–54 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Martyugin, P.V.: Complexity of Problems Concerning Carefully Synchronizing Words for PFA and Directing Words for NFA. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 288–302. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchronizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martyugin, P.V. (2012). Synchronization of Automata with One Undefined or Ambiguous Transition. In: Moreira, N., Reis, R. (eds) Implementation and Application of Automata. CIAA 2012. Lecture Notes in Computer Science, vol 7381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31606-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31606-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31605-0

  • Online ISBN: 978-3-642-31606-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics