Abstract
The coal mine safety decision systems, such as ventilation safety monitoring system, underground water inrush monitoring system, underground coal and gas emission monitoring system, have been established in many large and medium-sized coal mines. A large amount of original data had accumulated in these systems. How to transform data into information for scientific decision was a problem worth to consider for coal mine safety production. The rough set theory, quantitative analysis of incomplete, imprecise and uncertainty knowledge, provided a new method and tool for data mining. A kind of heuristic genetic algorithm for continuous attributes discretization was put forward to solve the problem of continuous attribute discretization of decision table; a kind of heuristic immune algorithm for attribute reduction was presented to conquer the shortage of existing attribute reduction algorithm; in order to solve the problem of reasoning and decision in incomplete and imprecise information, a kind of default rule mining model based on reduction lattice was proposed. Finally, data mining system based on rough set was designed, which was applied to data mining analysis of underground gas emission, good results were achieved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Niu, L.D.: Mine Gas Linkage Monitoring Method Based on Data Mining Approach. China Safety Science Journal 21, 62–68 (2011)
Ni, L.Q., Zhou, H.T., Gao, S.S.: A More Effective Data Mining Approach That Adroitly Combines Rough Set Theory with Evidence Theory. Journal of Northwestern Polytechnical University 28, 927–931 (2010)
Zhao, Z.P., Yin, Z.M., Chen, J.C.: Mine Hidden Danger Data Digging Model and Applicative Digging Algorithm. Coal Science and Technology 38, 67–69 (2010)
Zheng, H.Z., Liu, Y., Zhan, D.C.: Default Rules Frame of Non-monotonous Problems Based on Data Mining. Computer Science 33, 181–182 (2006)
Wang, Y.Y.: Knowledge Discovery Methods Research Based on Rough Set Theory. Shanghai Jiao Tong University, Shanghai (2006)
Xu, X., Zhai, J.M.: Multiscale Genetic Algorithms for Discretization in Rough Set on Trees. Modern Manufacturing Engineering 10, 1–4 (2009)
Liu, Y., Li, W.H., Chen, Y.L.: Research on Intelligent Fault Diagnosis Based on Artificial Immune System. Computer Measurement & Control 18, 2694–2696 (2010)
Zhao, L.S., Shi, J.H.: Real Value Attribute Reduction Method Based on Rough Sets. Journal of Inner Mongolia University 41, 97–101 (2010)
Liu, B., Pan, J.H., Liu, P.S.: Rule Evaluation Method and Data Quality Mining System. Computer Integrated Manufacturing Systems 15, 1436–1441 (2009)
Hou, G.Z.: Focus on Gas Safety Management Face Ventilation and Gas Management Means. Coal Technology 28, 199–200 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhou, T. (2012). Application of Data Mining in Coal Mine Safety Decision System Based on Rough Set. In: Huang, DS., Jiang, C., Bevilacqua, V., Figueroa, J.C. (eds) Intelligent Computing Technology. ICIC 2012. Lecture Notes in Computer Science, vol 7389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31588-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-31588-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31587-9
Online ISBN: 978-3-642-31588-6
eBook Packages: Computer ScienceComputer Science (R0)