Abstract
In this paper we introduce a novel human-centered data mining software system which was designed to gain intelligence from unstructured textual data. The architecture takes its roots in several case studies which were a collaboration between the Amsterdam-Amstelland Police, GasthuisZusters Antwerpen (GZA) hospitals and KU Leuven. It is currently being implemented by bachelor and master students of Moscow Higher School of Economics. At the core of the system are concept lattices which can be used to interactively explore the data. They are combined with several other complementary statistical data analysis techniques such as Emergent Self Organizing Maps and Hidden Markov Models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cimiano, P., Hotho, A., Staab, S.: Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis. J. Artif. Intell. Res (JAIR) 24, 305–339 (2005)
Collier, P.M.: Policing and the intelligent application of knowledge. Public Money & Management 26(2), 109–116 (2006)
Elzinga, P., Poelmans, J., Viaene, S., Dedene, G., Morsing, S.: Terrorist threat assessment with Formal Concept Analysis. In: Proc. IEEE International Conference on Intelligence and Security Informatics, Vancouver, Canada, May 23-26, pp. 77–82 (2010)
Elzinga, P., Wolff, K.E., Poelmans, J., Viaene, S., Dedene, G.: Analyzing chat conversations of arrested child abusers with temporal relational semantic systems. In: Contributions to 10th International Conference on Formal Concept Analysis, Leuven, Belgium, May 6-10 (2012)
Keus, R., Kruijff, M.S.: Huiselijk geweld, draaiboek voor de aanpak. Directie Preventie, Jeugd en Sanctiebeleid van de Nederlandse justitie (2000)
Maio, C.D., Fenza, G., Gaeta, M., Loia, V., Orciuoli, F., Senatore, S.: RSS-based e-learning recommendations exploiting fuzzy FCA for Knowledge Modeling. Applied Soft Computing 12(1), 113–124 (2012)
Poelmans, J., Dedene, G., Verheyden, G., Van der Mussele, H., Viaene, S., Peters, E.: Combining Business Process and Data Discovery Techniques for Analyzing and Improving Integrated Care Pathways. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 505–517. Springer, Heidelberg (2010c)
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: A Case of Using Formal Concept Analysis in Combination with Emergent Self Organizing Maps for Detecting Domestic Violence. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 247–260. Springer, Heidelberg (2009)
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Curbing domestic violence: Instantiating C-K theory with Formal Concept Analysis and Emergent Self Organizing Maps. Intelligent Systems in Accounting, Finance and Management 17(3-4), 167–191 (2010a)
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in Knowledge Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010b)
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formally Analyzing the Concepts of Domestic Violence. Expert Systems with Applications 38(4), 3116–3130 (2011a)
Poelmans, J., Elzinga, P., Dedene, G., Viaene, S., Kuznetsov, S.O.: A Concept Discovery Approach for Fighting Human Trafficking and Forced Prostitution. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-ConceptStruct 2011. LNCS, vol. 6828, pp. 201–214. Springer, Heidelberg (2011b)
Poelmans, J., Ignatov, D.I., Viaene, S., Dedene, G., Kuznetsov, S.: Text mining scientific papers: a survey on FCA-based information retrieval research. In: 12th Industrial Conference on Data Mining. LNCS, July 13-20, Berlin, Germany. Springer (2012)
Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings IEEE 77(2), 257–286 (1989)
Stumme, G., Wille, R., Wille, U.: Conceptual Knowledge Discovery in Databases using Formal Concept Analysis Methods. In: PKDD 1998. LNCS, vol. 1510, pp. 450–458. Springer, Heidelberg (1998)
Ultsch, A.: Maps for visualization of high-dimensional Data Spaces. In: Proc. WSOM 2003, Kyushu, Japan, pp. 225–230 (2003)
Ultsch, A., Hermann, L.: Architecture of emergent self-organizing maps to reduce projection errors. In: Proc. ESANN 2005, pp. 1–6 (2005)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)
Wolff, K.E.: States, Transitions, and Life Tracks in Temporal Concept Analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 127–148. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Poelmans, J., Elzinga, P., Neznanov, A.A., Dedene, G., Viaene, S., Kuznetsov, S.O. (2012). Human-Centered Text Mining: A New Software System. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2012. Lecture Notes in Computer Science(), vol 7377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31488-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-31488-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31487-2
Online ISBN: 978-3-642-31488-9
eBook Packages: Computer ScienceComputer Science (R0)