Abstract
In this paper we present a domain decomposition parallel preconditioner for a discretization of a plate problem on nonconforming meshes in 2D. The local discretizations are Adini nonconforming plate finite elements. On the interfaces between adjacent subdomains two mortar conditions are imposed. The condition number of the preconditioned problem is almost optimal i.e. it is bounded poly-logarithmically with respect to the mesh parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, vol. XI (Paris, 1989–1991). Pitman Res. Notes Math. Ser., vol. 299, pp. 13–51. Longman Sci. Tech., Harlow (1994)
Ben Belgacem, F.: The mortar finite element method with Lagrange multipliers. Numer. Math. 84(2), 173–197 (1999); First published as a technical report in 1994
Ben Belgacem, F., Maday, Y.: The mortar element method for three-dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31(2), 289–302 (1997)
Brenner, S.C., Sung, L.Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)
Brenner, S.C., Wang, K.: Two-level additive Schwarz preconditioners for C 0 interior penalty methods. Numer. Math. 102(2), 231–255 (2005)
Brenner, S.C., Sung, L.Y.: Multigrid algorithms for C 0 interior penalty methods. SIAM J. Numer. Anal. 44(1), 199–223 (2006)
Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, vol. II, pp. 17–351. North-Holland, Amsterdam (1991)
Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)
Achdou, Y., Kuznetsov, Y.A.: Substructuring preconditioners for finite element methods on nonmatching grids. East-West J. Numer. Math. 3(1), 1–28 (1995)
Achdou, Y., Maday, Y., Widlund, O.B.: Iterative substructuring preconditioners for mortar element methods in two dimensions. SIAM J. Numer. Anal. 36(2), 551–580 (1999)
Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic mortar finite element problems. Numer. Math. 95(3), 427–457 (2003)
Braess, D., Dahmen, W., Wieners, C.: A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37(1), 48–69 (1999)
Marcinkowski, L.: The mortar element method with locally nonconforming elements. BIT 39(4), 716–739 (1999)
Dryja, M.: A Neumann-Neumann algorithm for a mortar discetization of elliptic problems with discontinuous coefficients. Numer. Math. 99, 645–656 (2005)
Kim, H.H., Lee, C.O.: A preconditioner for the FETI-DP formulation with mortar methods in two dimensions. SIAM J. Numer. Anal. 42(5), 2159–2175 (2005)
Marcinkowski, L., Rahman, T.: Neumann-Neumann algorithms for a mortar Crouzeix-Raviart element for 2nd order elliptic problems. BIT 48(3), 607–626 (2008)
Xu, X., Li, L., Chen, W.: A multigrid method for the mortar-type Morley element approximation of a plate bending problem. SIAM J. Numer. Anal. 39(5), 1712–1731 (2001/2002)
Marcinkowski, L.: Domain decomposition methods for mortar finite element discretizations of plate problems. SIAM J. Numer. Anal. 39(4), 1097–1114 (2001)
Marcinkowski, L.: A Neumann-Neumann algorithm for a mortar finite element discretization of fourth-order elliptic problems in 2d. Numer. Methods Partial Differential Equations 25(6), 1425–1442 (2009), http://www.interscience.wiley.com , doi:10.1002/num.20406 Published online in Wiley InterScience on December 11, 2008
Marcinkowski, L.: A balancing Neumann-Neumann method for a mortar finite element discretization of a fourth order elliptic problem. J. Numer. Math. 18(3), 219–234 (2010)
Marcinkowski, L.: A preconditioner for a FETI-DP method for mortar element discretization of a 4th order problem in 2d. Electron. Trans. Numer. Anal. 38, 1–16 (2011)
Brenner, S.C.: The condition number of the Schur complement in domain decomposition. Numer. Math. 83(2), 187–203 (1999)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marcinkowski, L. (2012). Parallel Preconditioner for Nonconforming Adini Discretization of a Plate Problem on Nonconforming Meshes. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-31464-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31463-6
Online ISBN: 978-3-642-31464-3
eBook Packages: Computer ScienceComputer Science (R0)