[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parallel Preconditioner for Nonconforming Adini Discretization of a Plate Problem on Nonconforming Meshes

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

  • 2097 Accesses

Abstract

In this paper we present a domain decomposition parallel preconditioner for a discretization of a plate problem on nonconforming meshes in 2D. The local discretizations are Adini nonconforming plate finite elements. On the interfaces between adjacent subdomains two mortar conditions are imposed. The condition number of the preconditioned problem is almost optimal i.e. it is bounded poly-logarithmically with respect to the mesh parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, vol. XI (Paris, 1989–1991). Pitman Res. Notes Math. Ser., vol. 299, pp. 13–51. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  2. Ben Belgacem, F.: The mortar finite element method with Lagrange multipliers. Numer. Math. 84(2), 173–197 (1999); First published as a technical report in 1994

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Belgacem, F., Maday, Y.: The mortar element method for three-dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31(2), 289–302 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Sung, L.Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.C., Wang, K.: Two-level additive Schwarz preconditioners for C 0 interior penalty methods. Numer. Math. 102(2), 231–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Sung, L.Y.: Multigrid algorithms for C 0 interior penalty methods. SIAM J. Numer. Anal. 44(1), 199–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, vol. II, pp. 17–351. North-Holland, Amsterdam (1991)

    Google Scholar 

  8. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

    MATH  Google Scholar 

  9. Achdou, Y., Kuznetsov, Y.A.: Substructuring preconditioners for finite element methods on nonmatching grids. East-West J. Numer. Math. 3(1), 1–28 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Achdou, Y., Maday, Y., Widlund, O.B.: Iterative substructuring preconditioners for mortar element methods in two dimensions. SIAM J. Numer. Anal. 36(2), 551–580 (1999)

    Article  MathSciNet  Google Scholar 

  11. Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic mortar finite element problems. Numer. Math. 95(3), 427–457 (2003)

    Article  MathSciNet  Google Scholar 

  12. Braess, D., Dahmen, W., Wieners, C.: A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37(1), 48–69 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marcinkowski, L.: The mortar element method with locally nonconforming elements. BIT 39(4), 716–739 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dryja, M.: A Neumann-Neumann algorithm for a mortar discetization of elliptic problems with discontinuous coefficients. Numer. Math. 99, 645–656 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, H.H., Lee, C.O.: A preconditioner for the FETI-DP formulation with mortar methods in two dimensions. SIAM J. Numer. Anal. 42(5), 2159–2175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marcinkowski, L., Rahman, T.: Neumann-Neumann algorithms for a mortar Crouzeix-Raviart element for 2nd order elliptic problems. BIT 48(3), 607–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, X., Li, L., Chen, W.: A multigrid method for the mortar-type Morley element approximation of a plate bending problem. SIAM J. Numer. Anal. 39(5), 1712–1731 (2001/2002)

    Article  MathSciNet  Google Scholar 

  18. Marcinkowski, L.: Domain decomposition methods for mortar finite element discretizations of plate problems. SIAM J. Numer. Anal. 39(4), 1097–1114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marcinkowski, L.: A Neumann-Neumann algorithm for a mortar finite element discretization of fourth-order elliptic problems in 2d. Numer. Methods Partial Differential Equations 25(6), 1425–1442 (2009), http://www.interscience.wiley.com , doi:10.1002/num.20406 Published online in Wiley InterScience on December 11, 2008

    Google Scholar 

  20. Marcinkowski, L.: A balancing Neumann-Neumann method for a mortar finite element discretization of a fourth order elliptic problem. J. Numer. Math. 18(3), 219–234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marcinkowski, L.: A preconditioner for a FETI-DP method for mortar element discretization of a 4th order problem in 2d. Electron. Trans. Numer. Anal. 38, 1–16 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Brenner, S.C.: The condition number of the Schur complement in domain decomposition. Numer. Math. 83(2), 187–203 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marcinkowski, L. (2012). Parallel Preconditioner for Nonconforming Adini Discretization of a Plate Problem on Nonconforming Meshes. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics