[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parallel Version of Image Segmentation Algorithm Using Polygonal Markov Fields

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

  • 2096 Accesses

Abstract

In this paper we present an application of parallel simulated annealing method to a segmentation algorithm using polygonal Markov fields. After a brief presentation of the algorithm and a general scheme of parallelization methods using simulated annealing technique, there is presented parallel approach to the segmentation algorithm with different synchronization scenarios.

Authors also present results of the parallelization of the segmentation algorithm. There is discussed comparison between simulations with different synchronization scenarios applied to the multiple-trial approach of simulated annealing technique. Some simulations based on the number of threads are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adib, A.B.: The theory behind tempered Monte Carlo methods (2005), http://arturadib.googlepages.com/tempering.pdf

  2. Arak, T.: On Markovian random fields with finite number of values. In: 4th USSR-Japan Symposium on Probability Theory and Mathematical Statistics, Abstracts of Communications, Tbilisi (1982)

    Google Scholar 

  3. Arak, T., Surgailis, D.: Markov fields with polygonal realisations. Probabability Theory and Related Fields, 80 (1989)

    Google Scholar 

  4. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers C-28(9) (1979)

    Google Scholar 

  5. Chu, K.-W., Deng, Y., Reinitz, J.: Parallel Simulated Annealing by Mixing of States. Journal of Computational Physics 148 (1999)

    Google Scholar 

  6. Clifford, P., Middleton, R.D.: Reconstruction of polygonal images. Journal of Applied Statistics 16 (1989)

    Google Scholar 

  7. Clifford, P., Nicholls, G.K.: A Metropolis sampler for polygonal image reconstruction (1994)

    Google Scholar 

  8. Eglese, R.W.: Simulated Annealing: A tool for Operational Research. European Journal of Operational Research 46 (1994)

    Google Scholar 

  9. Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Keramidas, E.M. (ed.) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Interface Foundation, Fairfax Station (1991)

    Google Scholar 

  10. Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Application to Spin Glass Simulations. J.Phys. Soc. Japan 65 (1996)

    Google Scholar 

  11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science, 220 (1983)

    Google Scholar 

  12. Kluszczyński, R., van Lieshout, M.-C., Schreiber, T.: An Algorithm for Binary Image Segmentation Using Polygonal Markov Fields. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 383–390. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Kluszczyński, R., van Lieshout, M.N.M., Schreiber, T.: Image segmentation by polygonal Markov fields. Journal Annals of the Institute of Statistical Mathematics 59(3) (2007)

    Google Scholar 

  14. Li, H., Tejero, R., Monleon, D., Bassolino-Klimas, D., Abate-Shen, C., Bruccoleri, R.E., Montelione, G.T.: Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: Application in predicting the three-dimensional structure of murine homeodomain Msx-1. Protein Science 6 (1997)

    Google Scholar 

  15. Miki, M., Hiroyasu, T., Kasai, M., Ono, K., Jitta, T.: Temperature Parallel Simulated Annealing with Adaptive Neighborhood for Continuous Optimization Problem. Computational Intelligence and Applications (2002)

    Google Scholar 

  16. Moglich, A., Weinfurtner, D., Maurer, T., Gronwald, W., Kalbitzer, H.R.: A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. BMC Bioinformatics 6, 91 (2005)

    Article  Google Scholar 

  17. PL-Grid project home page, http://plgrid.pl

  18. Ram, D.J., Sreenivas, T.H., Subramaniam, K.G.: Parallel Simulated Annealing Algorithms. Journal of Parallel and Distributed Computing 37 (1996)

    Google Scholar 

  19. Rosenfeld, A., Kak, A.C.: Digital picture processing, 2nd edn., vol. 2. Academic Press, Orlando (1982)

    Google Scholar 

  20. Schreiber, T.: Mixing properties of polygonal Markov fields in the plane (2003), http://www.mat.uni.torun.pl/preprints

  21. Schreiber, T.: Random dynamics and thermodynamic limits for polygonal Markov fields in the plane. Advances in Applied Probability 37(4) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kluszczyński, R., Bała, P. (2012). Parallel Version of Image Segmentation Algorithm Using Polygonal Markov Fields. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics