Abstract
In this paper we present an application of parallel simulated annealing method to a segmentation algorithm using polygonal Markov fields. After a brief presentation of the algorithm and a general scheme of parallelization methods using simulated annealing technique, there is presented parallel approach to the segmentation algorithm with different synchronization scenarios.
Authors also present results of the parallelization of the segmentation algorithm. There is discussed comparison between simulations with different synchronization scenarios applied to the multiple-trial approach of simulated annealing technique. Some simulations based on the number of threads are presented as well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adib, A.B.: The theory behind tempered Monte Carlo methods (2005), http://arturadib.googlepages.com/tempering.pdf
Arak, T.: On Markovian random fields with finite number of values. In: 4th USSR-Japan Symposium on Probability Theory and Mathematical Statistics, Abstracts of Communications, Tbilisi (1982)
Arak, T., Surgailis, D.: Markov fields with polygonal realisations. Probabability Theory and Related Fields, 80 (1989)
Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers C-28(9) (1979)
Chu, K.-W., Deng, Y., Reinitz, J.: Parallel Simulated Annealing by Mixing of States. Journal of Computational Physics 148 (1999)
Clifford, P., Middleton, R.D.: Reconstruction of polygonal images. Journal of Applied Statistics 16 (1989)
Clifford, P., Nicholls, G.K.: A Metropolis sampler for polygonal image reconstruction (1994)
Eglese, R.W.: Simulated Annealing: A tool for Operational Research. European Journal of Operational Research 46 (1994)
Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Keramidas, E.M. (ed.) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Interface Foundation, Fairfax Station (1991)
Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Application to Spin Glass Simulations. J.Phys. Soc. Japan 65 (1996)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science, 220 (1983)
Kluszczyński, R., van Lieshout, M.-C., Schreiber, T.: An Algorithm for Binary Image Segmentation Using Polygonal Markov Fields. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 383–390. Springer, Heidelberg (2005)
Kluszczyński, R., van Lieshout, M.N.M., Schreiber, T.: Image segmentation by polygonal Markov fields. Journal Annals of the Institute of Statistical Mathematics 59(3) (2007)
Li, H., Tejero, R., Monleon, D., Bassolino-Klimas, D., Abate-Shen, C., Bruccoleri, R.E., Montelione, G.T.: Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: Application in predicting the three-dimensional structure of murine homeodomain Msx-1. Protein Science 6 (1997)
Miki, M., Hiroyasu, T., Kasai, M., Ono, K., Jitta, T.: Temperature Parallel Simulated Annealing with Adaptive Neighborhood for Continuous Optimization Problem. Computational Intelligence and Applications (2002)
Moglich, A., Weinfurtner, D., Maurer, T., Gronwald, W., Kalbitzer, H.R.: A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. BMC Bioinformatics 6, 91 (2005)
PL-Grid project home page, http://plgrid.pl
Ram, D.J., Sreenivas, T.H., Subramaniam, K.G.: Parallel Simulated Annealing Algorithms. Journal of Parallel and Distributed Computing 37 (1996)
Rosenfeld, A., Kak, A.C.: Digital picture processing, 2nd edn., vol. 2. Academic Press, Orlando (1982)
Schreiber, T.: Mixing properties of polygonal Markov fields in the plane (2003), http://www.mat.uni.torun.pl/preprints
Schreiber, T.: Random dynamics and thermodynamic limits for polygonal Markov fields in the plane. Advances in Applied Probability 37(4) (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kluszczyński, R., Bała, P. (2012). Parallel Version of Image Segmentation Algorithm Using Polygonal Markov Fields. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-31464-3_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31463-6
Online ISBN: 978-3-642-31464-3
eBook Packages: Computer ScienceComputer Science (R0)