Abstract
This work addresses the characterization of homomorphic encryption schemes both in terms of security and design. In particular, we are interested in currently existing fully homomorphic encryption (FHE) schemes and their common structures and security. Our main contributions can be summarized as follows:
-
We define a certain type of homomorphic encryption that we call shift-type and identify it as the basic underlying structure of all existing homomorphic encryption schemes. It generalizes the already known notion of shift-type group homomorphic encryption.
-
We give an IND-CPA characterization of all shift-type homomorphic encryption schemes in terms of an abstract subset membership problem.
-
We show that this characterization carries over to all leveled FHE schemes that arise by applying Gentry’s bootstrapping technique to shift-type homomorphic encryption schemes. Since this is the common structure of all existing schemes, our result actually characterizes the IND-CPA security of all existing bootstrapping-based leveled FHE.
-
We prove that the IND-CPA security of FHE schemes that offer a certain type of circuit privacy (for FHE schemes with a binary plaintext space we require circuit privacy for a single AND-gate and, in fact, all existing binary-plaintext FHE schemes offer this) and are based on Gentry’s bootstrapping technique is equivalent to the circular security of the underlying bootstrappable scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Melchor, C.A., Gaborit, P., Herranz, J.: Additively Homomorphic Encryption with d-Operand Multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 138–154. Springer, Heidelberg (2010)
Applebaum, B.: Key-Dependent Message Security: Generic Amplification and Completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011)
Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: Characterizations, impossibility results, and applications. Designs, Codes and Cryptography, 1–24, 10.1007/s10623-011-9601-2, http://dx.doi.org/10.1007/s10623-011-9601-2
Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded Key-Dependent Message Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010)
Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis, Yale University (1987)
Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106. IEEE (2011)
Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)
Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: FOCS, pp. 372–382. IEEE (1985)
Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)
Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority Secret-Ballot Elections with Linear Work. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)
Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)
Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)
El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)
Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP J. Inf. Secur., 15:1–15:15 (January 2007), http://dx.doi.org/10.1155/2007/13801
Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)
Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM (2009)
Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In: FOCS, pp. 107–109. IEEE (2011)
Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)
Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog Overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)
Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/680 (2011)
Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)
Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)
Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Somewhat Homomorphic Encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 55–72. Springer, Heidelberg (2012)
Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)
Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)
Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Armknecht, F., Katzenbeisser, S., Peter, A. (2012). Shift-Type Homomorphic Encryption and Its Application to Fully Homomorphic Encryption. In: Mitrokotsa, A., Vaudenay, S. (eds) Progress in Cryptology - AFRICACRYPT 2012. AFRICACRYPT 2012. Lecture Notes in Computer Science, vol 7374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31410-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-31410-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31409-4
Online ISBN: 978-3-642-31410-0
eBook Packages: Computer ScienceComputer Science (R0)