[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Shift-Type Homomorphic Encryption and Its Application to Fully Homomorphic Encryption

  • Conference paper
Progress in Cryptology - AFRICACRYPT 2012 (AFRICACRYPT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7374))

Included in the following conference series:

Abstract

This work addresses the characterization of homomorphic encryption schemes both in terms of security and design. In particular, we are interested in currently existing fully homomorphic encryption (FHE) schemes and their common structures and security. Our main contributions can be summarized as follows:

  • We define a certain type of homomorphic encryption that we call shift-type and identify it as the basic underlying structure of all existing homomorphic encryption schemes. It generalizes the already known notion of shift-type group homomorphic encryption.

  • We give an IND-CPA characterization of all shift-type homomorphic encryption schemes in terms of an abstract subset membership problem.

  • We show that this characterization carries over to all leveled FHE schemes that arise by applying Gentry’s bootstrapping technique to shift-type homomorphic encryption schemes. Since this is the common structure of all existing schemes, our result actually characterizes the IND-CPA security of all existing bootstrapping-based leveled FHE.

  • We prove that the IND-CPA security of FHE schemes that offer a certain type of circuit privacy (for FHE schemes with a binary plaintext space we require circuit privacy for a single AND-gate and, in fact, all existing binary-plaintext FHE schemes offer this) and are based on Gentry’s bootstrapping technique is equivalent to the circular security of the underlying bootstrappable scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Melchor, C.A., Gaborit, P., Herranz, J.: Additively Homomorphic Encryption with d-Operand Multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 138–154. Springer, Heidelberg (2010)

    Google Scholar 

  2. Applebaum, B.: Key-Dependent Message Security: Generic Amplification and Completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: Characterizations, impossibility results, and applications. Designs, Codes and Cryptography, 1–24, 10.1007/s10623-011-9601-2, http://dx.doi.org/10.1007/s10623-011-9601-2

  4. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded Key-Dependent Message Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis, Yale University (1987)

    Google Scholar 

  6. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

    Google Scholar 

  7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

    Google Scholar 

  8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106. IEEE (2011)

    Google Scholar 

  9. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Google Scholar 

  10. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: FOCS, pp. 372–382. IEEE (1985)

    Google Scholar 

  11. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority Secret-Ballot Elections with Linear Work. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

    Google Scholar 

  13. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

    Google Scholar 

  14. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  17. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP J. Inf. Secur., 15:1–15:15 (January 2007), http://dx.doi.org/10.1155/2007/13801

  18. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    Google Scholar 

  19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)

    Google Scholar 

  20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  21. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In: FOCS, pp. 107–109. IEEE (2011)

    Google Scholar 

  22. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog Overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/680 (2011)

    Google Scholar 

  25. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

    Google Scholar 

  27. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Somewhat Homomorphic Encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 55–72. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Armknecht, F., Katzenbeisser, S., Peter, A. (2012). Shift-Type Homomorphic Encryption and Its Application to Fully Homomorphic Encryption. In: Mitrokotsa, A., Vaudenay, S. (eds) Progress in Cryptology - AFRICACRYPT 2012. AFRICACRYPT 2012. Lecture Notes in Computer Science, vol 7374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31410-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31410-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31409-4

  • Online ISBN: 978-3-642-31410-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics