[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

BT* – An Advanced Algorithm for Anytime Classification

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7338))

  • 1725 Accesses

Abstract

In many scientific disciplines experimental data is generated at high rates resulting in a continuous stream of data. Data bases of previous measurements can be used to train classifiers that categorize newly incoming data. However, the large size of the training set can yield high classification times, e.g. for approaches that rely on nearest neighbors or kernel density estimation. Anytime algorithms circumvent this problem since they can be interrupted at will while their performance increases with additional computation time. Two important quality criteria for anytime classifiers are high accuracies for arbitrary time allowances and monotonic increase of the accuracy over time. The Bayes tree has been proposed as a naive Bayesian approach to anytime classification based on kernel density estimation. However, the employed decision process often results in an oscillating accuracy performance over time. In this paper we propose the BT* method and show in extensive experiments that it outperforms previous methods in both monotonicity and anytime accuracy and yields near perfect results on a wide range of domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andre, D., Stone, P.: Physiological data modeling contest, ICML 2004 (2004), http://www.cs.utexas.edu/sherstov/pdmc/

  2. Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime measures for top-k algorithms on exact and fuzzy data sets. VLDB Journal 18(2), 407–427 (2009)

    Article  Google Scholar 

  3. Bouckaert, R.R.: Naive Bayes Classifiers That Perform Well with Continuous Variables. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1089–1094. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Dean, T., Boddy, M.S.: An analysis of time-dependent planning. In: AAAI, pp. 49–54 (1988)

    Google Scholar 

  5. DeCoste, D.: Anytime query-tuned kernel machines via cholesky factorization. In: Proc. of the 3rd SIAM SDM (2003)

    Google Scholar 

  6. Esmeir, S., Markovitch, S.: Anytime learning of anycost classifiers. Machine Learning, 25th Anniversary 82(3), 445–473 (2011)

    Article  Google Scholar 

  7. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  8. Gopalakrishnan, P.S., Kanevsky, D., Nadas, A., Nahamoo, D.: An inequality for rational functions with applications to some statistical estimation problems. IEEE Transactions on Information Theory 37(1), 107–113 (1991)

    Article  MATH  Google Scholar 

  9. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: ACM SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  10. Härdle, W., Müller, M.: Multivariate and semiparametric kernel regression. In: Smoothing and Regression. Wiley Interscience (1997)

    Google Scholar 

  11. John, G., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: UAI. Morgan Kaufmann (1995)

    Google Scholar 

  12. Keogh, E.J., Pazzani, M.J.: Learning the structure of augmented bayesian classifiers. Intl. Journal on AI Tools 11(4), 587–601 (2002)

    Article  Google Scholar 

  13. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: Self-adaptive anytime stream clustering. In: ICDM, pp. 249–258 (2009)

    Google Scholar 

  14. Kranen, P., Günnemann, S., Fries, S., Seidl, T.: MC-Tree: Improving Bayesian Anytime Classification. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 252–269. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Likhachev, M., Ferguson, D., Gordon, G.J., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artificial Intelligence 172(14), 1613–1643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: NIPS (2003)

    Google Scholar 

  17. Liu, C.-L., Wellman, M.P.: On state-space abstraction for anytime evaluation of bayesian networks. SIGART Bulletin 7(2), 50–57 (1996)

    Article  Google Scholar 

  18. Pernkopf, F., Wohlmayr, M.: Large Margin Learning of Bayesian Classifiers Based on Gaussian Mixture Models. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 50–66. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Seidl, T., Assent, I., Kranen, P., Krieger, R., Herrmann, J.: Indexing density models for incremental learning and anytime classification on data streams. In: EDBT/ICDT, pp. 311–322 (2009)

    Google Scholar 

  20. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC (1986)

    Google Scholar 

  21. Ueno, K., Xi, X., Keogh, E.J., Lee, D.-Y.: Anytime classification using the nearest neighbor algorithm with applications to stream mining. In: ICDM, pp. 623–632 (2006)

    Google Scholar 

  22. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: KDD, pp. 226–235 (2003)

    Google Scholar 

  23. Yang, Y., Webb, G.I., Korb, K.B., Ting, K.M.: Classifying under computational resource constraints: anytime classification using probabilistic estimators. Machine Learning 69(1) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kranen, P., Hassani, M., Seidl, T. (2012). BT* – An Advanced Algorithm for Anytime Classification. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31235-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31234-2

  • Online ISBN: 978-3-642-31235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics