[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Kernelized Fuzzy C-Means Method and Gaussian Mixture Model in Unsupervised Cascade Clustering

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7339))

Abstract

Fuzzy C-Means (FCM) clustering and Gaussian Mixture Model (GMM) are two popular tools for data processing. In this study the unsupervised algorithm combining FCM clustering in the Kernel Space (KFCM) and GMM is presented. First, a ”kernel trick” is applied to the FCM algorithm. Then, the number of clusters is chosen automatically in the kernel space. On the basis of obtained starting parameters, i.e. number of mixture components, mean vector, covariance matrices and mixing proportion coefficients, the final GMM parameters are estimated. For this estimation the Expectation Maximization (EM) algorithm is used. The presented methodology - combination of KFCM and GMM methods named unsupervised cascade clustering - constitutes the basic step in Ewing’s sarcoma segmentation. On this basis the voxels intensity values describing segmented tumour and surrounded healthy tissue are defined and fuzzy connectedness analysis is performed. The obtained mixture parameters estimation results are compared with the results obtained using two different methods described in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buraczewski, J.: Radiodiagnostyka zmian nowotworowych. Państwowy Zakład Wydawnictw Lekarskich, Warszawa (1987)

    Google Scholar 

  2. Davies, A.M., Sundaram, M., James, S.L.J.: Imaging of Bone Tumors and Tumor-Like Lesions, Techniques and Applications, Medical Radiology, Diagnostic Imaging. Springer, Heidelberg (2009)

    Book  Google Scholar 

  3. Pruszynski, B.: Radiologia, Diagnostyka obrazowa, Rtg, TK, USG, MR i medycyna nuklearna. Wydawnictwo Lekarskie PZWL, Warszawa (2005)

    Google Scholar 

  4. Stoba, C., Czauderna, P.: Guzy kości u dzieci. Diagnostyka i leczenie. Wydawnictwo Folium, Lublin (1997)

    Google Scholar 

  5. Czajkowska, J.: Parametryzacja i trójwymiarowa segmentacja guzow kości w seriach rezonansu magnetycznego. Politechnika Ślźska, Gliwice (2011)

    Google Scholar 

  6. Helimed Diagnostic Imaging, Katowice (2004-2010)

    Google Scholar 

  7. Kawa, J., Pietka, E.: Kernelized Fuzzy C-Means Method in Fast Segmentation of Demyelination Plaques in Multiple Sclerosis. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS (August 2007)

    Google Scholar 

  8. Heo, G., Gader, P.: An Extension of Global Fuzzy C-Means Using Kernel Methods. In: IEEE International Conference on Fuzzy Systems (July 2010)

    Google Scholar 

  9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers (1981)

    Google Scholar 

  10. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy C-Means Clustering with Spatial Information for Image Segmentation. In: Computerized Medical Imaging and Graphics, vol. 30, pp. 9–15. Elsevier (2006)

    Google Scholar 

  11. Wieclawek, W., Rudzki, M., Czajkowska, J.: Live-Wire Approach with FCM Clustering and Adaptive Filtering for Edge Detection in Medical Images. In: XIăInternational PhD Workshop, OWD 2009, Conference Archives PTETiS, Wisşa, vol. 26, pp. 475–478 (2009)

    Google Scholar 

  12. Gustafson, D.E., Kessel, W.C.: Fuzzy Clustering with a Fuzzy Covariance Matrix. In: Proceedings of Conference on Decision Control, pp. 761–766. IEEE (1979)

    Google Scholar 

  13. Hathaway, R.J., Huband, J.M., Bezdek, J.C.: Kernelized Fuzzy C-Means Method in Fast Segmentation of Demyelination Plaques in Multiple Sclerosis. In: Proceedings of International Conference on Fuzzy Systems. IEEE (August 2005)

    Google Scholar 

  14. Chou, C.H., Su, M.C., Lai, E.: A New Cluster Validity Measure and Its Application to Image Compression. Pattern Analysis and Applications 7(2), 205–220 (2004)

    Google Scholar 

  15. Milligan, G.W., Cooper, M.C.: An Examination of Procedures for Determining the Number of Clusters in Data Set. Psychometrika 50(2), 159–179 (1985)

    Article  Google Scholar 

  16. Pal, N.R., Bezdek, J.C.: On Cluster Validity for the Fuzzy C-Means Model. IEEE Transactions on Fuzzy Systems 3(3), 370–379 (1995)

    Article  Google Scholar 

  17. Figueiredo, M., Jain, A.K.: Unsupervised Learning of Finite Mixture Models. IEEE Transaction on Pattern Analysis and Machine Intelligence 24(3), 381–396 (2002)

    Article  Google Scholar 

  18. McLachlan, G., Peel, D.: Finite Mixture Model. Wiley Series in Probability and Statistics (2000)

    Google Scholar 

  19. Honda, K., Ichihashi, H.: Regularized Linear Fuzzy Clustering and Probabilistic PCA Mixture Models. IEEE Transaction on Fuzzy Systems 13(4), 508–516 (2005)

    Article  Google Scholar 

  20. Mekhalfa, F., Nacereddine, N., Goumeidane, A.B.: Unsupervised Algorithm for Radiographic Image Segmentation Based on the Gaussian Mixture Model. In: The International Conference on Computer as a Tool, EUROCON (September 2007)

    Google Scholar 

  21. Chandramouli, R., Srikantam, V.K.: Optimum Probability Model Selection Using Akaike’s Information Criterion for Low Power Applications. In: IEEE International Symposium on Circuits and Systems (May 2000)

    Google Scholar 

  22. Wagenaar, D.A.: FSMEM for MoG, Term Project for CS/CNS/EE 156b: Learning Systems, Class by P. Perona and M. Welling, Caltech (June 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czajkowska, J., Bugdol, M., Pietka, E. (2012). Kernelized Fuzzy C-Means Method and Gaussian Mixture Model in Unsupervised Cascade Clustering. In: Piętka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Lecture Notes in Computer Science(), vol 7339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31196-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31196-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31195-6

  • Online ISBN: 978-3-642-31196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics