Abstract
We consider the rendezvous problem of multiple (mobile) agents in anonymous unidirectional ring networks under the constraint that each agent knows neither the number of nodes nor the number of agents. First, we prove for any (small) constant p(0 < p ≤ 1) that there exists no randomized algorithm that solves, with probability p, the rendezvous problem with (terminal) detection. For this reason, we consider the relaxed rendezvous problem, called the rendezvous problem without detection that does not require termination detection. We prove that there exists no randomized algorithm that solves, with probability 1, the rendezvous problem without detection. For the remaining cases, we show the possibility, that is, we propose a randomized algorithm that solves, with any given constant probability p(0 < p < 1), the rendezvous problem without detection.
This work is supported in part by Grant-in-Aid for Scientific Research ((B)2030012, (B)22300009, (B)23700056, (C)24500039) of JSPS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alpern, S., Baston, V.J., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36(1), 223–231 (1999)
Baba, D., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 86–100. Springer, Heidelberg (2010)
Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory of Computing Systems 40(2), 143–162 (2007)
Chalopin, J., Das, S., Widmayer, P.: Rendezvous of Mobile Agents in Directed Graphs. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 282–296. Springer, Heidelberg (2010)
Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of Mobile Agents When Tokens Fail Anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008)
Dieudonné, Y., Pelc, A.: Deterministic gathering of anonymous agents in arbitrary networks. Arxiv preprint arXiv:1111.0321 (2011)
Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: Proc. of SODA, pp. 585–594 (2007)
Kranakis, E., Krizanc, D.: An Algorithmic Theory of Mobile Agents. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 86–97. Springer, Heidelberg (2007)
Kranakis, E., Krizanc, D., Markou, E.: Mobile Agent Rendezvous in a Synchronous Torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006)
Kranakis, E., Krizanc, D., Markou, E.: The mobile agent rendezvous problem in the ring. Synthesis Lectures on Distributed Computing Theory, Lecture # 1. Morgan & Claypool Publishers (2010)
Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)
Sudo, Y., Baba, D., Nakamura, J., Ooshita, F., Kakugawa, H., Masuzawa, T.: An agent exploration in unknown undirected graphs with whiteboards. In: Proc. of WRAS, p. 8 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T. (2012). Randomized Rendezvous of Mobile Agents in Anonymous Unidirectional Ring Networks. In: Even, G., Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2012. Lecture Notes in Computer Science, vol 7355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31104-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-31104-8_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31103-1
Online ISBN: 978-3-642-31104-8
eBook Packages: Computer ScienceComputer Science (R0)