[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Grey-Based Particle Swarm Optimization Algorithm

  • Conference paper
Advances in Swarm Intelligence (ICSI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7331))

Included in the following conference series:

Abstract

In order to apply grey relational analysis to the evolutionary process, a modified grey relational analysis is introduced in this study. Then, with the help of such a grey relational analysis, this study also proposed a grey-based particle swarm optimization algorithm in which both inertia weight and acceleration coefficients are varying over the generations. In each generation, every particle has its own algorithm parameters and those parameters may differ for different particles. The proposed PSO algorithm is applied to solve the optimization problems of twelve test functions for illustration. Simulation results are compared with the other three variants of PSO to demonstrate the search performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: A new optimizer using particle swarm theory. In: Proc. 6th Intl. Symp. Micro Machine Human Sci., pp. 39–43. IEEE Press, New York (1995)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. 1991 IEEE Neural Netw., pp. 1942–1948. IEEE Press, New York (1995)

    Google Scholar 

  3. Zhan, Z.H., Zhan, J.Z., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man, Cybern., B. 39(6), 1362–1381 (2009)

    Article  Google Scholar 

  4. AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918 (2009)

    Article  Google Scholar 

  5. Lin, C.J., Hsieh, M.H.: Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72(4-6), 1121–1130 (2009)

    Article  Google Scholar 

  6. Wai, R.J., Lee, J.D., Chuang, K.L.: Real-time PID control strategy for maglev transportation system via particle swarm optimization. IEEE Trans. Ind. Electron. 58(2), 629–646 (2011)

    Article  Google Scholar 

  7. Deng, J.L.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)

    MATH  Google Scholar 

  8. Yeh, M.-F., Chang, C.-T., Leu, M.-S.: Financial distress prediction model via greyART network and grey model. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications. LNEE, vol. 67, pp. 91–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Yeh, M.F., Leu, M.S.: Grey adaptive growing CMAC network. Appl. Soft Comput. 11(8), 5400–5410 (2011)

    Article  Google Scholar 

  10. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. IEEE World Congr. Comput. Intell., pp. 69–73. IEEE Press, New York (1998)

    Google Scholar 

  11. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yeh, MF., Wen, C., Leu, MS. (2012). Grey-Based Particle Swarm Optimization Algorithm. In: Tan, Y., Shi, Y., Ji, Z. (eds) Advances in Swarm Intelligence. ICSI 2012. Lecture Notes in Computer Science, vol 7331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30976-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30976-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30975-5

  • Online ISBN: 978-3-642-30976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics