Abstract
In order to apply grey relational analysis to the evolutionary process, a modified grey relational analysis is introduced in this study. Then, with the help of such a grey relational analysis, this study also proposed a grey-based particle swarm optimization algorithm in which both inertia weight and acceleration coefficients are varying over the generations. In each generation, every particle has its own algorithm parameters and those parameters may differ for different particles. The proposed PSO algorithm is applied to solve the optimization problems of twelve test functions for illustration. Simulation results are compared with the other three variants of PSO to demonstrate the search performance of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.C.: A new optimizer using particle swarm theory. In: Proc. 6th Intl. Symp. Micro Machine Human Sci., pp. 39–43. IEEE Press, New York (1995)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. 1991 IEEE Neural Netw., pp. 1942–1948. IEEE Press, New York (1995)
Zhan, Z.H., Zhan, J.Z., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man, Cybern., B. 39(6), 1362–1381 (2009)
AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918 (2009)
Lin, C.J., Hsieh, M.H.: Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72(4-6), 1121–1130 (2009)
Wai, R.J., Lee, J.D., Chuang, K.L.: Real-time PID control strategy for maglev transportation system via particle swarm optimization. IEEE Trans. Ind. Electron. 58(2), 629–646 (2011)
Deng, J.L.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)
Yeh, M.-F., Chang, C.-T., Leu, M.-S.: Financial distress prediction model via greyART network and grey model. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications. LNEE, vol. 67, pp. 91–100. Springer, Heidelberg (2010)
Yeh, M.F., Leu, M.S.: Grey adaptive growing CMAC network. Appl. Soft Comput. 11(8), 5400–5410 (2011)
Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. IEEE World Congr. Comput. Intell., pp. 69–73. IEEE Press, New York (1998)
Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yeh, MF., Wen, C., Leu, MS. (2012). Grey-Based Particle Swarm Optimization Algorithm. In: Tan, Y., Shi, Y., Ji, Z. (eds) Advances in Swarm Intelligence. ICSI 2012. Lecture Notes in Computer Science, vol 7331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30976-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-30976-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30975-5
Online ISBN: 978-3-642-30976-2
eBook Packages: Computer ScienceComputer Science (R0)