[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Infinite Games and Transfinite Recursion of Multiple Inductive Definitions

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

The purpose of this research is to investigate the logical strength of weak determinacy of Gale-Stewart games from the standpoint of reverse mathematics. It is known that the determinacy of \(\Sigma^0_1\) sets (open sets) is equivalent to system ATR0 and that of \(\Sigma^0_2\) corresponds to the axiom of \(\Sigma^1_1\) inductive definitions. Recently, much effort has been made to characterize the determinacy of game classes above \(\Sigma^0_2\) within second order arithmetic. In this paper, we show that for any k ∈ ω, the determinacy of \(\Delta((\Sigma^0_2)_{k+1})\) sets is equivalent to the axiom of transfinite recursion of \(\Sigma^1_1\) inductive definitions with k operators, denote \([\Sigma^1_1]^k\)-IDTR. Here, \((\Sigma^0_2)_{k+1}\) is the difference class of k + 1 \(\Sigma^0_2\) sets and \(\Delta((\Sigma^0_2)_{k+1})\) is the conjunction of \((\Sigma^0_2)_{k+1}\) and co-\((\Sigma^0_2)_{k+1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradfield, J.C.: Fixpoints, games and the difference hierarchy. Theor. Inform. Appl. 37, 1–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bradfield, J.C.: The modal μ-calculus alternation hierarchy is strict. Theor. Comput. Sci. 195, 133–153 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Heinatsch, C., Möllerfeld, M.: The determinacy strength of \(\Pi^1_2\)-comprehension. Ann. Pure Appl. Logic 161, 1462–1470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mashiko, K., Tanaka, K., Yoshii, K.: Determinacy of the Infinite Games and Inductive Definition in Second Order Arithmetic. In: RIMS Kokyuroku, vol. 1729, pp. 167–177 (2011)

    Google Scholar 

  5. MedSalem, M.O., Tanaka, K.: \(\Delta^0_3\)-determinacy, comprehension and induction. Journal of Symbolic Logic 72, 452–462 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. MedSalem, M.O., Tanaka, K.: Weak determinacy and iterations of inductive definitions. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 15. World Sci. Publ., Hackensack (2008)

    Google Scholar 

  7. Montalbán, A., Shore, R.A.: The Limits of determinacy in second order arithmetic (preprint)

    Google Scholar 

  8. Montalbán, A.: Open Questions in Reverse Mathematics. Bulletin of Symbolic Logic 17, 431–454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nemoto, T.: Determinacy of Wadge classses and subsystems of second order arithmetic. Math. Log. Quart. 55(2), 154–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nemoto, T., MedSalem, M.O., Tanaka, K.: Infinite games in the Cantor space and subsystems of second order arithmetic. Math. Log. Quart. 53, 226–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer (1999)

    Google Scholar 

  12. Tanaka, K.: Weak axioms of determinacy and subsystems of analysis I (\(\Delta^0_2\) games). Z. Math. Logik Grundlag. Math. 36, 481–491 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tanaka, K.: Weak axioms of determinacy and subsystems of analysis II (\(\Sigma^0_2\) games). Ann. Pure Appl. Logic 52, 181–193 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoshii, K., Tanaka, K. (2012). Infinite Games and Transfinite Recursion of Multiple Inductive Definitions. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics