[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Mathematicians Who Liked Logic

The Case of Max Newman

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

  • 1736 Accesses

Abstract

The interaction between mathematicians and (formal) logicians has always been much slighter than one might imagine. After a brief review of examples of very partial contact in the period 1850-1930, the case of Max Newman is reviewed in some detail. The rather surprising origins and development of his interest in logic are recorded; they included a lecture course at Cambridge University, which was attended in 1935 by Alan Turing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aspray, W.: Oswald Veblen and the Origins of Mathematical Logic at Princeton. In: Drucker, T. (ed.) Perspectives on the History Of Mathematical Logic, pp. 54–70. Birkhäuser, Boston (1991)

    Google Scholar 

  • Bottazzini, U.: The Higher Calculus. A History of Real and Complex Analysis from Euler to Weierstrass. Springer, New York (1986)

    Book  MATH  Google Scholar 

  • Gardiner, M.: A Scatter of Memories. Free Association Books, London (1988)

    Google Scholar 

  • Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte fu ̈r Mathematik und Physik 38, 173–198 (1931); Many reprs. and transs.

    Google Scholar 

  • Grattan-Guinness, I.: The Search For Mathematical Roots, 1870-1940. Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to Gödel. Princeton University Press, Princeton (2000)

    Google Scholar 

  • Grattan-Guinness, I.: Re-interpreting “\(\rotatebox[origin=c]{180}{\textsf{Y}}\)”: Kempe on Multisets and Peirce on Graphs, 1886-1905. Transactions of the C. S. Peirce Society 38, 327–350 (2002)

    MathSciNet  Google Scholar 

  • Grattan-Guinness, I.: The Reception of Gödel’s 1931 Incompletability Theorems by Mathematicians, and Some Logicians, up to the Early 1960s. In: Baaz, M., Papadimitriou, C.H., Putnam, H.W., Scott, D.S., Harper, C.L. (eds.) Kurt Gödel and the Foundations of Mathematics. Horizons of Truth, pp. 55–74. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  • Grattan-Guinness, I.: Discovering the Logician Max Newman (in preparation, 2012a)

    Google Scholar 

  • Grattan-Guinness, I.: Logic, Topology and Physics: Max Newman to Bertrand Russell (1928) (in preparation, 2012b)

    Google Scholar 

  • Hallett, M.: Cantorian Set Theory and Limitation of Size. Clarendon Press, Oxford (1984)

    Google Scholar 

  • Harris, H.: Lionel Sharples Penrose. Biographical Memoirs of Fellows of the Royal Society 19, 521–561 (1973); Repr. in Journal of Medical Genetics 11, 1–24 (1974)

    Google Scholar 

  • Hilbert, D.: Die logischen Grundlagen der Mathematik. Mathematische Annalen 88, 151–165 (1922); Repr. in Gesammelte Abhandlungen, vol. 3, pp. 178-191. Springer, Berlin (1935)

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges, A.: Alan Turing: the Enigma. Burnett Books and Hutchinson, London (1983)

    Google Scholar 

  • Jahnke, N.H.: A History of Analysis. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  • Kleene, S.C.: Introduction to Metamathematics. van Nostrand, Amsterdam (1952)

    MATH  Google Scholar 

  • Kuratowski, K.: A Half Century of Polish Mathematics. Polish Scientific Publishers, Oxford (1980)

    MATH  Google Scholar 

  • Medvedev, F.A.: Scenes from the History of Real Functions. Birkhäuser, Basel (1991); translated by R. Cooke

    Book  MATH  Google Scholar 

  • Menzler-Trott, E.: Gentzens Problem. Birkhäuser, Basel (2001); English ed.: Logic’s Lost Genius: the Life of Gerhard Gentzen. American Mathematical Society and London Mathematical Society, Providence (2007)

    Google Scholar 

  • Moore, G.H.: Zermelo’s Axiom of Choice. Springer, New York (1982)

    Book  MATH  Google Scholar 

  • Moore-Colyer, R.J.: Rolf Gardiner, English Patriot and the Council for the Church and Countryside. The Agricultural History Review 49, 187–209 (2001)

    Google Scholar 

  • Newman, M.H.A.: On Approximate Continuity. Transactions of the Cambridge Philosophical Society 23, 1–18 (1923a)

    Google Scholar 

  • Newman, M.H.A.: The Foundations of Mathematics from the Standpoint of Physics (1923b) manuscript, Saint John College Archives, item F 33.1

    Google Scholar 

  • Newman, M.H.A.: Mr. Russell’s “Causal Theory of Perception”. Mind 37, 137–148 (1928)

    Article  Google Scholar 

  • Newman, M.H.A.: On Theories with a Combinatorial Definition of “Equivalence”. Annals of Mathematics 43, 223–243 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M.H.A.: Stratified Systems of Logic. Proceedings of the Cambridge Philosophical Society 39, 69–83 (1943)

    Article  MATH  Google Scholar 

  • Newman, M.H.A.: Alan Mathison Turing. Biographical Memoirs of Fellows of the Royal Society 1, 253–263 (1955)

    Article  Google Scholar 

  • Newman, M.H.A., Turing, A.: A Formal Theorem in Church’s Theory of Types. Journal of Symbolic Logic 7, 28–33 (1943)

    MathSciNet  Google Scholar 

  • Peckhaus, V.: Hilbert, Zermelo und die Institutionalisierung der mathematischen Logik. Deutschland. Berichte zur Wissenschaftsgeschichte 15, 27–38 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Peckhaus, V.: Logic in Transition: the Logical Calculi of Hilbert (1905) and Zermelo (1908). In: Prawitz, D., Westerståhl, D. (eds.) Logic and Philosophy of Science in Uppsala, pp. 311–323. Kluwer, Dordrecht (1994)

    Google Scholar 

  • Roero, C.S., Luciano, E.: La scuola di Giuseppe Peano. In: Roero (ed.) Peano e la sua scuola, Fra matematica, logica e interlingua, Atti del Congresso internazionale di studi, Torino, October 6-7, 2008, vol. xi–xviii, pp. 1–212. Deputazione Subalpina di Storia Patria (2010)

    Google Scholar 

  • Rosenthal, A.: Neuere Untersuchungen über Funktionen reeller Veränderlichen. In: Encyklopädie der mathematischen Wissenschaften, vol. 2, pt. C, (article IIC9), pp. 851–1187. Teubner, Leipzig (1923)

    Google Scholar 

  • Russell, B.A.W.: The Analysis of Matter. Kegan Paul, London (1927)

    Google Scholar 

  • Sieg, W.: Hilbert Programs: 1917-1922. Bulletin of Symbolic Logic 5, 1–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund, K.: A Philosopher’s Mathematician: Hans Hahn and the Vienna Circle. The Mathematical Intelligencer 17(4), 16–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Stadler, F.: The Vienna Circle. Springer, Vienna (2001)

    Google Scholar 

  • Tarski, A.: Introduction to Logic and to the Methodology of the Deductive Sciences. Oxford University Press, New York (1941); (1st edn., translated by O. Helmer)

    Google Scholar 

  • Turing, A.M.: On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)

    Google Scholar 

  • Weyl, C.H.H.: Über die neue Grundlagenkrise der Mathematik. Mathematische Zeitschrift 10, 39–79 (1921); Repr. in Gesammelte Abhandlungen, vol. 2, pp. 143-180. Springer, Berlin (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grattan-Guinness, I. (2012). On Mathematicians Who Liked Logic. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics