Abstract
The interaction between mathematicians and (formal) logicians has always been much slighter than one might imagine. After a brief review of examples of very partial contact in the period 1850-1930, the case of Max Newman is reviewed in some detail. The rather surprising origins and development of his interest in logic are recorded; they included a lecture course at Cambridge University, which was attended in 1935 by Alan Turing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aspray, W.: Oswald Veblen and the Origins of Mathematical Logic at Princeton. In: Drucker, T. (ed.) Perspectives on the History Of Mathematical Logic, pp. 54–70. Birkhäuser, Boston (1991)
Bottazzini, U.: The Higher Calculus. A History of Real and Complex Analysis from Euler to Weierstrass. Springer, New York (1986)
Gardiner, M.: A Scatter of Memories. Free Association Books, London (1988)
Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte fu ̈r Mathematik und Physik 38, 173–198 (1931); Many reprs. and transs.
Grattan-Guinness, I.: The Search For Mathematical Roots, 1870-1940. Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to Gödel. Princeton University Press, Princeton (2000)
Grattan-Guinness, I.: Re-interpreting “\(\rotatebox[origin=c]{180}{\textsf{Y}}\)”: Kempe on Multisets and Peirce on Graphs, 1886-1905. Transactions of the C. S. Peirce Society 38, 327–350 (2002)
Grattan-Guinness, I.: The Reception of Gödel’s 1931 Incompletability Theorems by Mathematicians, and Some Logicians, up to the Early 1960s. In: Baaz, M., Papadimitriou, C.H., Putnam, H.W., Scott, D.S., Harper, C.L. (eds.) Kurt Gödel and the Foundations of Mathematics. Horizons of Truth, pp. 55–74. Cambridge University Press, Cambridge (2011)
Grattan-Guinness, I.: Discovering the Logician Max Newman (in preparation, 2012a)
Grattan-Guinness, I.: Logic, Topology and Physics: Max Newman to Bertrand Russell (1928) (in preparation, 2012b)
Hallett, M.: Cantorian Set Theory and Limitation of Size. Clarendon Press, Oxford (1984)
Harris, H.: Lionel Sharples Penrose. Biographical Memoirs of Fellows of the Royal Society 19, 521–561 (1973); Repr. in Journal of Medical Genetics 11, 1–24 (1974)
Hilbert, D.: Die logischen Grundlagen der Mathematik. Mathematische Annalen 88, 151–165 (1922); Repr. in Gesammelte Abhandlungen, vol. 3, pp. 178-191. Springer, Berlin (1935)
Hodges, A.: Alan Turing: the Enigma. Burnett Books and Hutchinson, London (1983)
Jahnke, N.H.: A History of Analysis. American Mathematical Society, Providence (2003)
Kleene, S.C.: Introduction to Metamathematics. van Nostrand, Amsterdam (1952)
Kuratowski, K.: A Half Century of Polish Mathematics. Polish Scientific Publishers, Oxford (1980)
Medvedev, F.A.: Scenes from the History of Real Functions. Birkhäuser, Basel (1991); translated by R. Cooke
Menzler-Trott, E.: Gentzens Problem. Birkhäuser, Basel (2001); English ed.: Logic’s Lost Genius: the Life of Gerhard Gentzen. American Mathematical Society and London Mathematical Society, Providence (2007)
Moore, G.H.: Zermelo’s Axiom of Choice. Springer, New York (1982)
Moore-Colyer, R.J.: Rolf Gardiner, English Patriot and the Council for the Church and Countryside. The Agricultural History Review 49, 187–209 (2001)
Newman, M.H.A.: On Approximate Continuity. Transactions of the Cambridge Philosophical Society 23, 1–18 (1923a)
Newman, M.H.A.: The Foundations of Mathematics from the Standpoint of Physics (1923b) manuscript, Saint John College Archives, item F 33.1
Newman, M.H.A.: Mr. Russell’s “Causal Theory of Perception”. Mind 37, 137–148 (1928)
Newman, M.H.A.: On Theories with a Combinatorial Definition of “Equivalence”. Annals of Mathematics 43, 223–243 (1942)
Newman, M.H.A.: Stratified Systems of Logic. Proceedings of the Cambridge Philosophical Society 39, 69–83 (1943)
Newman, M.H.A.: Alan Mathison Turing. Biographical Memoirs of Fellows of the Royal Society 1, 253–263 (1955)
Newman, M.H.A., Turing, A.: A Formal Theorem in Church’s Theory of Types. Journal of Symbolic Logic 7, 28–33 (1943)
Peckhaus, V.: Hilbert, Zermelo und die Institutionalisierung der mathematischen Logik. Deutschland. Berichte zur Wissenschaftsgeschichte 15, 27–38 (1992)
Peckhaus, V.: Logic in Transition: the Logical Calculi of Hilbert (1905) and Zermelo (1908). In: Prawitz, D., Westerståhl, D. (eds.) Logic and Philosophy of Science in Uppsala, pp. 311–323. Kluwer, Dordrecht (1994)
Roero, C.S., Luciano, E.: La scuola di Giuseppe Peano. In: Roero (ed.) Peano e la sua scuola, Fra matematica, logica e interlingua, Atti del Congresso internazionale di studi, Torino, October 6-7, 2008, vol. xi–xviii, pp. 1–212. Deputazione Subalpina di Storia Patria (2010)
Rosenthal, A.: Neuere Untersuchungen über Funktionen reeller Veränderlichen. In: Encyklopädie der mathematischen Wissenschaften, vol. 2, pt. C, (article IIC9), pp. 851–1187. Teubner, Leipzig (1923)
Russell, B.A.W.: The Analysis of Matter. Kegan Paul, London (1927)
Sieg, W.: Hilbert Programs: 1917-1922. Bulletin of Symbolic Logic 5, 1–44 (1999)
Sigmund, K.: A Philosopher’s Mathematician: Hans Hahn and the Vienna Circle. The Mathematical Intelligencer 17(4), 16–19 (1995)
Stadler, F.: The Vienna Circle. Springer, Vienna (2001)
Tarski, A.: Introduction to Logic and to the Methodology of the Deductive Sciences. Oxford University Press, New York (1941); (1st edn., translated by O. Helmer)
Turing, A.M.: On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)
Weyl, C.H.H.: Über die neue Grundlagenkrise der Mathematik. Mathematische Zeitschrift 10, 39–79 (1921); Repr. in Gesammelte Abhandlungen, vol. 2, pp. 143-180. Springer, Berlin (1968)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grattan-Guinness, I. (2012). On Mathematicians Who Liked Logic. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-30870-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30869-7
Online ISBN: 978-3-642-30870-3
eBook Packages: Computer ScienceComputer Science (R0)