[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unpacking and Understanding Evolutionary Algorithms

  • Chapter
Advances in Computational Intelligence (WCCI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7311))

Included in the following conference series:

Abstract

Theoretical analysis of evolutionary algorithms (EAs) has made significant progresses in the last few years. There is an increased understanding of the computational time complexity of EAs on certain combinatorial optimisation problems. Complementary to the traditional time complexity analysis that focuses exclusively on the problem, e.g., the notion of NP-hardness, computational time complexity analysis of EAs emphasizes the relationship between algorithmic features and problem characteristics. The notion of EA-hardness tries to capture the essence of when and why a problem instance class is hard for what kind of EAs. Such an emphasis is motivated by the practical needs of insight and guidance for choosing different EAs for different problems. This chapter first introduces some basic concepts in analysing EAs. Then the impact of different components of an EA will be studied in depth, including selection, mutation, crossover, parameter setting, and interactions among them. Such theoretical analyses have revealed some interesting results, which might be counter-intuitive at the first sight. Finally, some future research directions of evolutionary computation will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3, 82–102 (1999)

    Article  Google Scholar 

  2. Li, B., Lin, J., Yao, X.: A novel evolutionary algorithm for determining unified creep damage constitutive equations. International Journal of Mechanical Sciences 44(5), 987–1002 (2002)

    Article  MATH  Google Scholar 

  3. Yang, Z., Tang, K., Yao, X.: Self-adaptive differential evolution with neighborhood search. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC 2008), pp. 1110–1116. IEEE Press, Piscataway (2008)

    Chapter  Google Scholar 

  4. Yang, Z., Li, X., Bowers, C., Schnier, T., Tang, K., Yao, X.: An efficient evolutionary approach to parameter identification in a building thermal model. IEEE Transactions on Systems, Man, and Cybernetics — Part C (2012), doi:10.1109/TSMCC.2011.2174983

    Google Scholar 

  5. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Transactions on Evolutionary Computation 13, 1151–1166 (2009)

    Article  Google Scholar 

  6. Handa, H., Chapman, L., Yao, X.: Robust route optimisation for gritting/salting trucks: A CERCIA experience. IEEE Computational Intelligence Magazine 1, 6–9 (2006)

    Article  Google Scholar 

  7. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-objective search problem. IEEE Transactions on Software Engineering 37, 264–282 (2011)

    Article  Google Scholar 

  8. Wang, Z., Tang, K., Yao, X.: Multi-objective approaches to optimal testing resource allocation in modular software systems. IEEE Transactions on Reliability 59, 563–575 (2010)

    Article  Google Scholar 

  9. Dam, H.H., Abbass, H.A., Lokan, C., Yao, X.: Neural-based learning classifier systems. IEEE Transactions on Knowledge and Data Engineering 20, 26–39 (2008)

    Article  MATH  Google Scholar 

  10. Yao, X., Islam, M.M.: Evolving artificial neural network ensembles. IEEE Computational Intelligence Magazine 3, 31–42 (2008)

    Google Scholar 

  11. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141(1), 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chong, S.Y., Tino, P., Yao, X.: Measuring generalization performance in co-evolutionary learning. IEEE Transactions on Evolutionary Computation 12, 479–505 (2008)

    Article  Google Scholar 

  13. Salcedo-Sanz, S., Cruz-Roldán, F., Heneghan, C., Yao, X.: Evolutionary design of digital filters with application to sub-band coding and data transmission. IEEE Transactions on Signal Processing 55, 1193–1203 (2007)

    Article  MathSciNet  Google Scholar 

  14. Zhang, P., Yao, X., Jia, L., Sendhoff, B., Schnier, T.: Target shape design optimization by evolving splines. In: Proc. of the 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 2009–2016. IEEE Press, Piscataway (2007)

    Chapter  Google Scholar 

  15. Li, Y., Hu, C., Yao, X.: Innovative batik design with an interactive evolutionary art system. J. of Computer Sci. and Tech. 24(6), 1035–1047 (2009)

    Article  Google Scholar 

  16. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127, 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hajek, B.: Hitting time and occupation time bounds implied by drift analysis with applications. Adv. Appl. Probab. 14, 502–525 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, J., Yao, X.: Maximum cardinality matching by evolutionary algorithms. In: Proceedings of the 2002 UK Workshop on Computational Intelligence (UKCI 2002), Birmingham, UK, pp. 53–60 (September 2002)

    Google Scholar 

  19. He, J., Yao, X.: Time complexity analysis of an evolutionary algorithm for finding nearly maximum cardinality matching. J. of Computer Sci. and Tech. 19, 450–458 (2004)

    Article  MathSciNet  Google Scholar 

  20. Oliveto, P., He, J., Yao, X.: Analysis of the (1+1)-ea for finding approximate solutions to vertex cover problems. IEEE Transactions on Evolutionary Computation 13, 1006–1029 (2009)

    Article  Google Scholar 

  21. Lehre, P.K., Yao, X.: Runtime analysis of the (1+1) ea on computing unique input output sequences. Information Sciences (2010), doi:10.1016/j.ins.2010.01.031

    Google Scholar 

  22. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3, 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, J., Yao, X.: From an individual to a population: An analysis of the first hitting time of population-based evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6, 495–511 (2002)

    Article  Google Scholar 

  24. Chen, T., Tang, K., Chen, G., Yao, X.: A large population size can be unhelpful in evolutionary algorithms. Theoretical Computer Science (2011), doi:10.1016/j.tcs.2011.02.016

    Google Scholar 

  25. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines — a survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

    Article  Google Scholar 

  26. Lehre, P.K., Yao, X.: Runtime analysis of (1+1) ea on computing unique input output sequences. In: Proc. of the 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 1882–1889. IEEE Press, Piscataway (2007)

    Chapter  Google Scholar 

  27. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-output sequences. Soft Computing 15, 1675–1687 (2011)

    Article  MATH  Google Scholar 

  28. Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime of evolutionary algorithms. IEEE Transactions on Evolutionary Computation (2011), doi:10.1109/TEVC.2011.2112665

    Google Scholar 

  29. Chen, T., Tang, K., Chen, G., Yao, X.: Analysis of computational time of simple estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation 14, 1–22 (2010)

    Article  Google Scholar 

  30. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  31. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  32. Chen, T., Lehre, P.K., Tang, K., Yao, X.: When is an estimation of distribution algorithm better than an evolutionary algorithm? In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1470–1477. IEEE Press, Piscataway (2009)

    Chapter  Google Scholar 

  33. Droste, S.: Analysis of the (1+1) ea for a dynamically changing onemax-variant. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, pp. 55–60. IEEE Press, Piscataway (2002)

    Google Scholar 

  34. Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: An analysis of frequency and magnitude of change. In: Proceedings of the 2009 Genetic and Evolutionary Computation Conference, pp. 1713–1720. ACM Press, New York (2009)

    Google Scholar 

  35. Yu, Y., Yao, X., Zhou, Z.-H.: On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence (2012), doi:10.1016/j.artint.2012.01.001

    Google Scholar 

  36. Fukunaga, A.S.: Genetic algorithm portfolios. In: Proceedings of the 2000 IEEE Congress on Evolutionary Computation, pp. 16–19. IEEE Press, Piscataway (2000)

    Google Scholar 

  37. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for numerical optimization. IEEE Transactions on Evolutionary Computation 14, 782–800 (2010)

    Article  Google Scholar 

  38. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Information Sciences 178, 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, Z., Tang, K., Yao, X.: Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Computing 15, 2141–2155 (2011)

    Article  Google Scholar 

  40. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation (2011), doi:10.1109/TEVC.2011.2112662

    Google Scholar 

  41. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21, 1–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yao, X. (2012). Unpacking and Understanding Evolutionary Algorithms. In: Liu, J., Alippi, C., Bouchon-Meunier, B., Greenwood, G.W., Abbass, H.A. (eds) Advances in Computational Intelligence. WCCI 2012. Lecture Notes in Computer Science, vol 7311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30687-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30687-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30686-0

  • Online ISBN: 978-3-642-30687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics