[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Control of Assistive Tools Using Voice Interface and Fuzzy Methods

  • Conference paper
Business Information Systems (BIS 2012)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 117))

Included in the following conference series:

  • 925 Accesses

Abstract

The paper describes voice controlled multimodal assistive system with fuzzy control. Voice commands are often most convenient way to control various assistive tools. For full functionality voice commands need interpretation. The detection of voice boundaries in the long audio recording was implemented. The experimental results of fuzzy based indoor navigation system are presented in this article. The fuzzy control strategy presented bellow works on a given trajectory principle. The position of the device, the distance from the trajectory, orientation and control tasks are evaluated according to visual data. Paper presents the control model and algorithm of a real-life prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudžionis, A., Ratkevičius, K., Rudžionis, V.: Voice interactive systems. In: Helal, A., Mokhtari, M., Abdulrazak, B. (eds.) The Engineering Handbook of Smart Technology for Aging, Disability and Independence, pp. 281–297 (2008)

    Google Scholar 

  2. Macek, T., Kleindienst, J., Krchal, J., Seredi, L.: Multi-modal telephony services in home Intelligent Environments. In: 3rd IET International Conference, pp. 404–410 (2007)

    Google Scholar 

  3. Rabiner, L.R., Sambur, M.R.: An Algorithm For Determining the Endpoints in Isolated Utterances. Bell System Tech J. (54), 297–315 (1975)

    Google Scholar 

  4. Ying, G.S., Mitchell, C.D., Jamieson, L.: Endpoint Detection of Isolated Utterances Based on a Modified Teager Energy Measurement. In: Proc. of ICASSP 1993, pp. 732–735 (1993)

    Google Scholar 

  5. Hoyt, J., Wechsler, H.: Detection of Human Speech in Structured Noise. In: Proc. of ICASSP 1994, pp. 237–240 (1994)

    Google Scholar 

  6. Scheirer, E., Slaney, M.: Construction of Robust Multifeature Speech / Music Discriminator. In: Proc. of ICASSP 1997, pp. 1331–1334 (1997)

    Google Scholar 

  7. Rudzionis, A., Rudzionis, V.: Noisy speech detection and endpointing. In: Proc. of ISCA Workshop “Voice Operated Telecom Services”, Ghent, Belgium, pp. 79–84 (2000)

    Google Scholar 

  8. Rudžionis, V., Maskeliūnas, R., Rudžionis, A.: Assistive Tools for the Motor-Handicapped People Using Speech Technologies: Lithuanian Case. In: Abramowicz, W., Maciaszek, L., Węcel, K. (eds.) BIS 2011 Workshops, Part 2. LNBIP, vol. 97, pp. 123–131. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Maskeliūnas, R., Rudžionis, A., Ratkevičius, K., Rudžionis, V.: Investigation of foreign languages models for Lithuanian speech recognition. Elektronika ir Elektrotechnika 3, 15–20 (2009)

    Google Scholar 

  10. Jurafsky, D., Martin, J.: Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, 2nd edn. Prentice-Hall (2009)

    Google Scholar 

  11. Gokhan Ak, A., Cansever, G., Delibasi, A.: Robot Trajectory Tracking with Adaptive RBFNN-Based Fuzzy Sliding Mode Control. Information Technology and Control 40(2), 151–156 (2011)

    Google Scholar 

  12. Sun, D., Feng, G., Lam, C.M., Dong, H.: Orientation control of a differential mobile robot through wheel synchronization. IEEE/ASME Trans. on Mechatronics 10(3), 345–351 (2005)

    Article  Google Scholar 

  13. Boquete, V., Garcia, R., Barea, R., Mazo, M.: Neural control of the movements of the wheelchair. Journal of Intelligent and Robotic Systems, 213–226 (1999)

    Google Scholar 

  14. Tang Shu-bo, Z., Yan, L., Lei, W.: Discrete trajectory tracking control of wheeled mobile robots. In: Proc. of the 2004 IEEE Int. Conf. on Robotics and Biometrics 2004, pp. 344–349 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rudzionis, V., Maskeliunas, R., Rasymas, T. (2012). Control of Assistive Tools Using Voice Interface and Fuzzy Methods. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds) Business Information Systems. BIS 2012. Lecture Notes in Business Information Processing, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30359-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30359-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30358-6

  • Online ISBN: 978-3-642-30359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics