[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Decision-Making for Clinical Research and Health Administration

  • Chapter
  • First Online:
Engineering and Management of IT-based Service Systems

Abstract

This chapter presents a health decision-support system called DISEArch that allows the identification and analysis of relevant EHR for decision-making. It uses structured and non-structured data, and provides analytical as well as visualization facilities over individual or sets of EHR. DISEArch proves to be useful to empower researchers during analysis processes and to reduce considerably the time required to obtain relevant EHR for a study. The analysis of semantic distance between EHR should also be further developed. As with any information systems project, a conversation needs to be put in place to realize the full potential that IT-based systems offer for people, in this case within the medical domain. It is a mutual learning experience that requires constant translations, frequent prototype discussions, grounding of new IT-based support in current practices and clear identification of existing problems and future opportunities that are opened up in order to enrich the momentum of the project, enlarge the community of early adopters and guaranteeing the continued financial, scientific and administrative support for the project from management stakeholders. Our experience is very positive and we intend to further pursue this approach and extract lessons learned for similar projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gresh, D.L., Rabenhorst, D.A., Shabo, A., Slavin, S.: PRIMA: A case study of using information visualization techniques for patient record analysis. In: Proceedings of the IEEE Visualization, pp. 509–512 (2002)

    Google Scholar 

  2. Lisboa, P.J.G.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 15, 11–39 (2002)

    Article  Google Scholar 

  3. McCauley, N., Ala, M.: The use of expert systems in the healthcare industry. Inform. Manage. 22, 227–235 (1992)

    Article  Google Scholar 

  4. Kalim, K., Carson, E., Cramp, D.: The role of soft systems methodology in healthcare policy provision and decision support. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 5025–5030 (2004)

    Google Scholar 

  5. Kalim, K., Carson, E.R., Cramp, D.: An illustration of whole systems thinking. Health Serv. Manage. Res. 19, 174–185 (2006)

    Article  Google Scholar 

  6. Hesse, B.W., Shneiderman, B.: eHealth research from the user’s perspective. Am. J. Prev. Med. 32, S97–S103 (2007)

    Article  Google Scholar 

  7. Carroll, J.M., Rosson, M.B.: Participatory design in community informatics. Des. Stud. 28, 243–261 (2007)

    Google Scholar 

  8. Mao, J.-Y., Vredenburg, K., Smith, P.W., Carey, T.: The state of user-centered design practice. Commun. ACM 48, 105–109 (2005)

    Article  Google Scholar 

  9. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Inform. 77, 81–97 (2008)

    Google Scholar 

  10. Windle, P.E.: Data mining: an excellent research tool. J. Perianesthesia Nurs.: Official J. Am. Soc. PeriAnesthesia Nurs./Am. Soc. Perianesthesia Nurs. 19, 355–356 (2004)

    Google Scholar 

  11. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)

    Google Scholar 

  12. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inform. Syst. 19, 39–64 (2007)

    Google Scholar 

  13. Shearer, C.: The CRISP-DM Model: The new blueprint for data mining. J. Data Warehouse. 5, 13–22 (2000)

    Google Scholar 

  14. Gaspar, L., Scott, C., Rotman, M., Asbell, S., Phillips, T., Wasserman, T., McKenna, W.G., Byhardt, R.: Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 37, 745–751 (1997)

    Article  Google Scholar 

  15. Highet, V.S., Forrest, A., Ballow, C.H., Schentag, J.J.: Antibiotic dosing issues in lower respiratory tract infection: population-derived area under inhibitory curve is predictive of efficacy. J. Antimicrob. Chemother. 43, 55–63 (1999)

    Article  Google Scholar 

  16. Burbidge, R., Trotter, M., Buxton, B., Holden, S.: Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput. Chem. 26, 5–14 (2001)

    Article  Google Scholar 

  17. Kroes, R., Renwick, A.G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B., Schlatter, J., Van Schothorst, F., Vos, J.G., Würtzen, G.: Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food Chem. Toxicol. 42, 65–83 (2004)

    Article  Google Scholar 

  18. Suppes, T., Dennehy, E.B., Hirschfeld, R.M.A., Altshuler, L.L., Bowden, C.L., Calabrese, J.R., Crismon, M.L., Ketter, T.A., Sachs, G.S., Swann, A.C.: The Texas Implementation of Medication Algorithms: Update to the algorithms for treatment of bipolar I disorder. J. Clin. Psychiatry 66, 870–886 (2005)

    Article  Google Scholar 

  19. Hill, R.P., Lubarsky, D.A., Phillips-Bute, B., Fortney, J.T., Creed, M.R., Glass, P.S.A., Gan, T.J.: Cost-effectiveness of prophylactic antiemetic therapy with ondansetron, droperidol, or placebo. Anesthesiology 92, 958–967 (2000)

    Article  Google Scholar 

  20. Adams, P.C., Gregor, J.C., Kertesz, A.E., Valberg, L.S.: Screening blood donors for hereditary hemochromatosis: Decision analysis model based on a 30-year database. Gastroenterology 109, 177–188 (1995)

    Article  Google Scholar 

  21. Hess, K.R., Abbruzzese, M.C., Lenzi, R., Raber, M.N., Abbruzzese, J.L.: Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma. Clin. Cancer Res. 5, 3403–3410 (1999)

    Google Scholar 

  22. Wang, T.D., Wongsuphasawat, K., Plaisant, C., Shneiderman, B.: Extracting insights from electronic health records: case studies, a visual analytics process model, and design recommendations. J. Med. Syst. 35, 1135–1152 (2011)

    Google Scholar 

  23. Thiessard, F., Mougin, F., Diallo, G., Jouhet, V., Cossin, S., Garcelon, N., Campillo, B., Jouini, W., Grosjean, J., Massari, P., Griffon, N., Dupuch, M., Tayalati, F., Dugas, E., Balvet, A., Grabar, N., Pereira, S., Frandji, B., Darmoni, S., Cuggia, M.: RAVEL: retrieval and visualization in electronic health records. Stud. Health Technol. Inform. 180, 194–198 (2012)

    Google Scholar 

  24. Hsu, W., Taira, R.K., El-Saden, S., Kangarloo, H., Bui, A.A.T.: Context-based electronic health record: toward patient specific healthcare. IEEE Trans. Inform. Technol. Biomed.: Publi. IEEE Eng. Med. Biol. Soc. 16, 228–234 (2012)

    Google Scholar 

  25. Muller, H., Maurer, H., Reihs, R., Sauer, S., Zatloukal, K.: Adaptive visual symbols for personal health records. In: Proceedings of the 2011 15th International Conference on Information Visualisation (IV), pp. 220–225 (2011)

    Google Scholar 

  26. Bui, A.A.T., Aberle, D.R., Kangarloo, H.: TimeLine: visualizing integrated patient records, IEEE Trans. Inform. Technol. Biomed.: Publi. IEEE Eng. Med. Biol. Soc. 11, 462–473 (2007)

    Google Scholar 

  27. Arguedas-Arguedas, O.: Tipos de diseño en estudios de investigación biomédica. Acta Médica Costarricense 52, 16–18 (2010)

    Google Scholar 

  28. Calandre-Hoenigsfeld, L., Bermejo-Pareja, F.: Difficult-to-classify symptoms and syndromes in a series of 5398 neurological outpatients diagnosed according to ICD-10 criteria. Síntomas y síndromes de difícil clasifcación en una serie ambulatoria de 5.398 pacientes neurológicos diagnosticados según la CIE-10 53, 513–523 (2011)

    Google Scholar 

  29. Tanno, L.K., Ganem, F., Demoly, P., Toscano, C.M., Bierrenbach, A.L.: Undernotification of anaphylaxis deaths in Brazil due to difficult coding under the ICD-10. Allergy: Eur. J. Allergy Clin. Immunol. 67, 783–789 (2012)

    Article  Google Scholar 

  30. Komajda, M., Lapuerta, P., Hermans, N., Gonzalez-Juanatey, J.R., Van Veldhuisen, D.J., Erdmann, E., Tavazzi, L., Poole-Wilson, P., Le Pen, C.: Adherence to guidelines is a predictor of outcome in chronic heart failure: the MAHLER survey. Eur. Heart J. 26, 1653–1659 (2005)

    Article  Google Scholar 

  31. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceedings of the International Conference on New Methods in Language Processing, Manchester, UK, (1994)

    Google Scholar 

  32. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M., Saggion, H., Petrak, J., Li, Y., Peters, W., Others: Text Processing with GATE (Version 6), University of Sheffield Department of Computer Science Sheffield (2011)

    Google Scholar 

  33. Leenards, P., Pultorak, D., Henry, C.: MOF: V4.0, (Microsoft Operations Framework 4.0): Version 4.0: A Pocket Guide, Van Haren Publishing (2008)

    Google Scholar 

Download references

Acknowledgments

This work is part of the project entitled “Identificación semiautomática de pacientes con enfermedades crónicas a partir de la exploración retrospectiva de las historias clínicas electrónicas registradas en el sistema SAHI del Hospital San Ignacio” funded by Hospital Universitario San Ignacio and Pontificia Universidad Javeriana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael A. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pomares-Quimbaya, A., González, R.A., Bohórquez, WR., Mauricio Muñoz, O., Milena García, O., Londoño, D. (2014). Improving Decision-Making for Clinical Research and Health Administration. In: Mora, M., Marx Gómez, J., Garrido, L., Pérez, F. (eds) Engineering and Management of IT-based Service Systems. Intelligent Systems Reference Library, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39928-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39928-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39927-5

  • Online ISBN: 978-3-642-39928-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics