[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unconditionally-Secure Robust Secret Sharing with Minimum Share Size

  • Conference paper
Financial Cryptography and Data Security (FC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7859))

Included in the following conference series:

  • 7884 Accesses

Abstract

An n-player (t,δ)-secure threshold robust secret sharing scheme is a (t,n)-threshold secret sharing scheme with the additional property that the secret can be recovered, with probability at least 1 − δ, from the set of all shares even if up to t players provide incorrect shares. The existing constructions of threshold robust secret sharing schemes for the range n/3 ≤ t < n/2 have the share size larger than the secret size. An important goal in this area is to minimize the share size. In the paper, we propose a new unconditionally-secure threshold robust secret sharing scheme for the case n ≥ 2t + 2 with share size equal to the secret size. This is the minimum possible size as dictated by the perfect secrecy of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Simon, J. (ed.) STOC 1988, pp. 1–10. ACM (1988)

    Google Scholar 

  2. Berlekamp, E.R., Welch, L.R.: Error correction of algebraic block codes. U.S. patent number 4.633.470 (1986)

    Google Scholar 

  3. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  4. Brickell, E.F., Stinson, D.R.: The detection of cheaters in threshold schemes. SIAM J. Discrete Math. 4(4), 502–510 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters for a general access structure. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 185–194. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 118–125. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: FOCS 1985, pp. 383–395. IEEE Computer Society (1985)

    Google Scholar 

  9. Cramer, R., Damgård, I., Fehr, S.: On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. In: FOCS 1990, pp. 36–45. IEEE Computer Society (1990)

    Google Scholar 

  11. Ganger, G.R., Khosla, P.K., Bakkaloglu, M., Bigrigg, M.W., Goodson, G.R., Oguz, S., Pandurangan, V., Soules, C.A.N., Strunk, J.D., Wylie, J.J.: Survivable storage systems. In: Proceedings of DARPA Information Survivability Conference & Exposition II, DISCEX 2001, vol. 2, pp. 184–195 (2001)

    Google Scholar 

  12. Garay, J.A., Givens, C., Ostrovsky, R.: Secure message transmission with small public discussion. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 177–196. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Garay, J., Givens, C., Ostrovsky, R.: Secure message transmission by public discussion: A brief survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 126–141. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Gemmell, P., Sudan, M.: Highly resilient correctors for polynomials. Inf. Process. Lett. 43(4), 169–174 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmission scheme. IEICE Transactions 92-A(1), 105–112 (2009)

    Google Scholar 

  16. Lakshmanan, S., Ahamad, M., Venkateswaran, H.: Responsive security for stored data. IEEE Trans. Parallel Distrib. Syst. 14(9), 818–828 (2003)

    Article  Google Scholar 

  17. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland publishing company

    Google Scholar 

  18. Martin, K.M., Paterson, M.B., Stinson, D.R.: Error decodable secret sharing and one-round perfectly secure message transmission for general adversary structures. Cryptography and Communications 3(2), 65–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Commun. ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  20. Obana, S.: Almost optimum t-cheater identifiable secret sharing schemes. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 284–302. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure against cheating. SIAM J. Discrete Math. 20(1), 79–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: Johnson, D.S. (ed.) STOC 1989, pp. 73–85. ACM (1989)

    Google Scholar 

  23. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 172–184. ACM (2007)

    Google Scholar 

  24. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptography 2(4), 357–390 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sudan, M.: Decoding of Reed-Solomon codes beyond the error-correction bound. J. Complexity 13(1), 180–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2), 133–138 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Waldman, M., Rubin, A.D., Cranor, L.F.: The architecture of robust publishing systems. ACM Trans. Internet Techn. 1(2), 199–230 (2001)

    Article  Google Scholar 

  29. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In: FOCS 1979, pp. 175–182. IEEE Computer Society (1979)

    Google Scholar 

  30. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jhanwar, M.P., Safavi-Naini, R. (2013). Unconditionally-Secure Robust Secret Sharing with Minimum Share Size. In: Sadeghi, AR. (eds) Financial Cryptography and Data Security. FC 2013. Lecture Notes in Computer Science, vol 7859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39884-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39884-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39883-4

  • Online ISBN: 978-3-642-39884-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics