Abstract
This work aims at reporting an innovative approach towards the development of a three-dimensional cell-based bio-hybrid actuator. The system, made of polydimethylsiloxane and based on a stress-induced rolling membrane technique, was provided with different elastic moduli (achieved by varying the monomer/curing agent ratio), with proper surface micro-topographies and with a proper surface chemical functionalization to assure a long-term stable protein coating. Finite element modeling allowed to correlate the overall contraction of the polymeric structure along its main axis (caused by properly modeled muscle cell contraction forces) with substrate thickness and with matrix mechanical properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zupan, M., Ashby, M.F., Fleck, N.A.: Actuator classification and selection – the development of a database. Adv. Eng. Mat. 4, 933–939 (2002)
Pons, J.L.: Emerging actuator technologies: a micromechatronic approach. John Wiley & Sons Ltd., Chichester (2005)
Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Nat. Acad. Sci. 108, 20400–20403 (2011)
Dario, P., Verschure, P.F.M.J., Prescott, T., Cheng, G., Sandini, G., Cingolani, R., Dillmann, R., Floreano, D., Leroux, C., MacNeil, S., Roelfsema, P., Verykios, X., Bicchi, A., Melhuish, C., Albu-Schaffer., A.: Robot companions for citizens. In: Proc. FET Conf. Exhib., Proc. Comp. Sci., vol. 7, pp. 47–51 (2011)
Ricotti, L., Menciassi, A.: Bio-hybrid muscle cell-based actuators. Biomed. Microdev. 14, 987–998 (2012)
Herr, H., Dennis, R.G.: A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehab. 1 (2004), doi:10.1186/1743-0003-1-6
Xi, A.J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mat. 4, 180–184 (2005)
Tanaka, A.Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., Kitamori, T.: An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip 6, 362–368 (2006)
Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., Parker, K.K.: Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007)
Akiyama, A., Iwabuchi, K., Furukawa, Y., Morishima, K.: Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 9, 140–144 (2009)
Fujita, H., Dau, V.T., Shimizu, K., Hatsuda, R., Sugiyama, S., Nagamori, E.: Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed. Microdev. 13, 123–129 (2011)
Nagamine, K., Kawashima, T., Sekine, S., Ido, Y., Kanzaki, M., Nishizawa, M.: Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11, 513–517 (2011)
Sakar, M.S., Neal, D., Boudou, T., Borochin, M.A., Li, Y., Weiss, R., Kamm, R.D., Chen, C.S., Asada, H.H.: Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 12, 4976–4985 (2012)
Yuan, B., Jin, Y., Sun, Y., Wang, D., Sun, J., Wang, Z., Zhang, W., Jiang, X.: A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv. Mat. 24, 890–896 (2012)
Genchi, G.G., Ciofani, G., Liakos, I., Ricotti, L., Ceseracciu, L., Athanassiou, A., Mazzolai, B., Menciassi, A., Mattoli, V.: Bio/non-bio interfaces: a straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. Coll. Surf. B: Biointerf. 105, 144–151 (2013)
Lin, G., Pister, K.S.J., Roos, K.P.: Surface micromachined polysilicon heart cell force transducer. J. Micromech. Syst. 9, 9–17 (2000)
Shimizu, K., Sasaki, H., Hida, H., Fujita, H., Obinata, K., Shikida, M., Nagamori, E.: Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement. Biomed. Microdev. 12, 247–252 (2010)
Charest, J.L., García, A.J., King, W.P.: Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials 28, 2202–2210 (2007)
Okano, T., Satoh, S., Oka, T., Matsuda, T.: Tissue engineering of skeletal muscle: highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43, M749–M753 (1997)
Engler, A.J., Griffin, M.A., Sen, S., Bönnemann, C.G., Sweeney, H.L., Discher, D.E.: Myotubes differentiate optimally on substrates with tissue-like stiffness. J. Cell Biol. 166, 877–887 (2004)
Ricotti, L., Taccola, S., Pensabene, V., Mattoli, V., Fujie, T., Takeoka, S., Men-ciassi, A., Dario, P.: Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films. Biomed. Microdev. 12, 809–819 (2010)
Cooper, S.T., Maxwell, A.L., Kizana, E., Ghoddusi, M., Hardeman, E.C., Alexander, I.E., Allen, D.G., North, K.N.: C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression. Cytoskeleton 58, 200–211 (2004)
Greco, F., Fujie, T., Ricotti, L., Taccola, S., Mazzolai, B., Mattoli, V.: Microwrinkled conducting polymer interface for anisotropic multicellular alignment. Appl. Mat. Interf. 5, 573–584 (2013)
Woledge, R.C., Curtin, N.A., Homsher, E.: Energetic aspects of muscle contrac-tion. Academic Press, Bellington (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ricotti, L., Vannozzi, L., Dario, P., Menciassi, A. (2013). Three-Dimensional Tubular Self-assembling Structure for Bio-hybrid Actuation. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-39802-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39801-8
Online ISBN: 978-3-642-39802-5
eBook Packages: Computer ScienceComputer Science (R0)