Abstract
This paper investigates the usefulness of a part of speech language model on the task of automatic speech recognition. The develped model uses part of speech tags as categories in a category-based language model. The constructed model is used to re-score the hypotheses generated by the HTK acoustic module. The probability of a given sequence of words is estimated using n-grams with Witten-Bell backoff.
The experiments presented in this paper were carried out for Polish. The best obtained results show that the part-of-speech-only language model trained on a 1-million manually tagged corpus reduces the word error rate by more than 10 percentage points.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ziółko, B., Skurzok, D.: N-grams model for Polish. Speech and Language Technologies, Book 2, pp. 107–127. InTech Publisher (2011)
Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice-Hall, Inc., New Jersey (2008)
Hirsimaki, T., Pylkkonen, J., Kurimo, M.: Importance of high-order n-gram models in morph-based speech recognition. IEEE Transactions on Audio, Speech and Language Processing 17(4), 724–732 (2009)
Sak, H., Saraçlar, M., Gungor, T.: Morpholexical and discriminative language models for turkish automatic speech recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(8), 2341–2351 (2012)
Szałkiewicz, Ł., Przepiórkowski, A.: Anotacja morfoskładniowa. In: Narodowy Korpus Języka Polskiego, pp. 59–96. Wydawnictwo Naukowe PWN (2012)
Radziszewski, A.: A tiered CRF tagger for polish. In: Bembenik, R., Skonieczny, Ł., Rybiński, H., Kryszkiewicz, M., Niezgódka, M. (eds.) Intelligent Tools for Building a Scientific Information Platform. SCI, vol. 467, pp. 215–230. Springer, Heidelberg (2013)
Niesler, T., Whittaker, E., Woodland, P.: Comparison of part-of-speech and automatically derived category-based language models for speech recognition. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 177–180. IEEE (1998)
Ziółko, B., Manandhar, S., Wilson, R.C., Ziółko, M.: Language model based on pos tagger. In: Proceedings of SIGMAP 2008 the International Conference on Signal Processing and Multimedia Applications, Porto (2008)
Piasecki, M.: Hand-written and automatically extracted rules for polish tagger. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 205–212. Springer, Heidelberg (2006)
Burnard, L., Sperberg-McQueen, C.: Guidelines for electronic text encoding and interchange. In: Association for Computers and the Humanities, Association for Computational Linguistics, Association for Literary and Linguistic Computing (1994)
Przepiórkowski, A.: Korpus IPI PAN. Wersja wstępna. Instytut Podstaw Informatyki PAN (2004)
Janus, D., Przepiórkowski, A.: Poliqarp 1.0: Some technical aspects of a linguistic search engine for large corpora. In: The Proceedings of Practical Applications of Linguistic Corpora (2005)
Stolcke, A., et al.: SRILM-an extensible language modeling toolkit. In: Proceedings of the International Conference on Spoken Language Processing, vol. 2, pp. 901–904 (2002)
Saloni, Z., Woliński, M., Wołosz, R., Gruszczyński, W., Skowrońska, D.: Słownik gramatyczny języka polskiego (Eng. Grammatical dictionary of Polish) (2102)
Radziszewski, A., Śniatowski, T.: A memory-based tagger for polish. In: Proceedings of the 5th Language & Technology Conference, Poznań (2011)
Acedański, S.: A morphosyntactic brill tagger for inflectional languages. In: Loftsson, H., Rögnvaldsson, E., Helgadóttir, S. (eds.) IceTAL 2010. LNCS, vol. 6233, pp. 3–14. Springer, Heidelberg (2010)
Young, S.: Large vocabulary continuous speech recognition: a review. IEEE Signal Processing Magazine 13(5), 45–57 (1996)
Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: HTK Book. Cambridge University Engineering Department, UK (2005)
Grocholewski, S.: CORPORA - speech database for Polish diphones. In: Proceedings of Eurospeech (1997)
Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. In: Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, pp. 310–318. Association for Computational Linguistics (1996)
Jurafsky, D., Martin, J., Kehler, A.: Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall (2009)
Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1995, vol. 1, pp. 181–184. IEEE (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pohl, A., Ziółko, B. (2013). Using Part of Speech N-Grams for Improving Automatic Speech Recognition of Polish. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-39712-7_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39711-0
Online ISBN: 978-3-642-39712-7
eBook Packages: Computer ScienceComputer Science (R0)