[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Interactive System Building 3D Environment Using a Moving Depth Sensor

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7975))

Included in the following conference series:

  • 1812 Accesses

Abstract

We present an interactive system helping reconstruct a 3D indoor environment and manipulate it using a moving 3D sensor. Our system takes the depth stream from a depth sensor and converts it into point clouds. After that, the pose of the 3D sensor is tracked in real-time by matching the current point cloud to those from all previous frames; in the next step, it is mapped to a unique world point cloud in order to build the 3D model of that environment. Tracking the 3D sensor in real-time helps automatically fill the holes from the model, where the previous frames has not covered, making the model complete. Once the 3D model of the environment is ready, our system allows us to either add more 3D objects on it or remove an existing one. Here, we propose two different 3D object segmentation methods, which is the core module of our object removal function, for evaluation: a K-means based algorithm for simple models, and a graph-based algorithm for complex models. The system is tested and evaluated on various indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vision Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  2. SoftKinetic: Softkinetic solutions, http://www.softkinetic.com/fr-be/solutions.aspx/

  3. Eisler, C.: Use the power of kinect for windows to change the world, http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/kinect-for-windows-commercial-program-announced.aspx

  4. Oggier, T., Lustenberger, F., Blanc, N.: Miniature 3D TOF camera for real-time imaging. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS (LNAI), vol. 4021, pp. 212–216. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Microsoft: Primesense supplies 3-d-sensing technology to project natal for xbox 360, http://www.microsoft.com/en-us/news/press/2010/mar10/03-31PrimeSensePR.aspx/

  6. Microsoft: Kinect for xbox360, http://www.xbox.com/en-US/xbox360/accessories/kinect/KinectForXbox360/

  7. Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (October 2011)

    Google Scholar 

  8. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (May 2011)

    Google Scholar 

  9. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: Spatially extended KinectFusion. In: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia (July 2012)

    Google Scholar 

  10. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST 2011, pp. 559–568. ACM, New York (2011)

    Google Scholar 

  11. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with cuda. Queue 6(2), 40–53 (2008)

    Article  Google Scholar 

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U. (eds.) Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Portland (1996)

    Google Scholar 

  13. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theor. 28(2), 129–137 (2006)

    Article  MathSciNet  Google Scholar 

  14. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., vol. 1, pp. 281–297. Univ. of Calif. Press (1967)

    Google Scholar 

  15. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  16. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  17. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  18. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH 2004, pp. 303–308. ACM, New York (2004)

    Chapter  Google Scholar 

  19. Golovinskiy, A., Funkhouser, T.: Min-cut based segmentation of point clouds. In: IEEE Workshop on Search in 3D and Video (S3DV) at ICCV (September 2009)

    Google Scholar 

  20. Lempitsky, V.S., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27-October 4, pp. 277–284. IEEE (2009)

    Google Scholar 

  21. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  22. Klasing, K., Wollherr, D., Buss, M.: A clustering method for efficient segmentation of 3d laser data. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, May 19-23, pp. 4043–4048. IEEE (2008)

    Google Scholar 

  23. Szymon Rusinkiewicz, M.L.: Efficient variants of the ICP algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (3DIM) (June 2001)

    Google Scholar 

  24. Marton, Z.C., Rusu, R.B., Beetz, M.: On Fast Surface Reconstruction Methods for Large and Noisy Datasets. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12-17 (2009)

    Google Scholar 

  25. Siek, J., Lee, L.Q., Lumsdaine, A.: Boost random number library (June 2000), http://www.boost.org/libs/graph/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, D., Doan, N.H., Dinh, T.B., Dinh, T.B. (2013). An Interactive System Building 3D Environment Using a Moving Depth Sensor. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39640-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39640-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39639-7

  • Online ISBN: 978-3-642-39640-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics