Abstract
We present an interactive system helping reconstruct a 3D indoor environment and manipulate it using a moving 3D sensor. Our system takes the depth stream from a depth sensor and converts it into point clouds. After that, the pose of the 3D sensor is tracked in real-time by matching the current point cloud to those from all previous frames; in the next step, it is mapped to a unique world point cloud in order to build the 3D model of that environment. Tracking the 3D sensor in real-time helps automatically fill the holes from the model, where the previous frames has not covered, making the model complete. Once the 3D model of the environment is ready, our system allows us to either add more 3D objects on it or remove an existing one. Here, we propose two different 3D object segmentation methods, which is the core module of our object removal function, for evaluation: a K-means based algorithm for simple models, and a graph-based algorithm for complex models. The system is tested and evaluated on various indoor environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vision Comput. 10(3), 145–155 (1992)
SoftKinetic: Softkinetic solutions, http://www.softkinetic.com/fr-be/solutions.aspx/
Eisler, C.: Use the power of kinect for windows to change the world, http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/kinect-for-windows-commercial-program-announced.aspx
Oggier, T., Lustenberger, F., Blanc, N.: Miniature 3D TOF camera for real-time imaging. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS (LNAI), vol. 4021, pp. 212–216. Springer, Heidelberg (2006)
Microsoft: Primesense supplies 3-d-sensing technology to project natal for xbox 360, http://www.microsoft.com/en-us/news/press/2010/mar10/03-31PrimeSensePR.aspx/
Microsoft: Kinect for xbox360, http://www.xbox.com/en-US/xbox360/accessories/kinect/KinectForXbox360/
Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (October 2011)
Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (May 2011)
Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: Spatially extended KinectFusion. In: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia (July 2012)
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST 2011, pp. 559–568. ACM, New York (2011)
Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with cuda. Queue 6(2), 40–53 (2008)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U. (eds.) Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Portland (1996)
Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theor. 28(2), 129–137 (2006)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., vol. 1, pp. 281–297. Univ. of Calif. Press (1967)
Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)
Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH 2004, pp. 303–308. ACM, New York (2004)
Golovinskiy, A., Funkhouser, T.: Min-cut based segmentation of point clouds. In: IEEE Workshop on Search in 3D and Video (S3DV) at ICCV (September 2009)
Lempitsky, V.S., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27-October 4, pp. 277–284. IEEE (2009)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)
Klasing, K., Wollherr, D., Buss, M.: A clustering method for efficient segmentation of 3d laser data. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, May 19-23, pp. 4043–4048. IEEE (2008)
Szymon Rusinkiewicz, M.L.: Efficient variants of the ICP algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (3DIM) (June 2001)
Marton, Z.C., Rusu, R.B., Beetz, M.: On Fast Surface Reconstruction Methods for Large and Noisy Datasets. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12-17 (2009)
Siek, J., Lee, L.Q., Lumsdaine, A.: Boost random number library (June 2000), http://www.boost.org/libs/graph/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pham, D., Doan, N.H., Dinh, T.B., Dinh, T.B. (2013). An Interactive System Building 3D Environment Using a Moving Depth Sensor. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39640-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-39640-3_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39639-7
Online ISBN: 978-3-642-39640-3
eBook Packages: Computer ScienceComputer Science (R0)