Abstract
This paper describes a novel moment matching based fitting method for phase-type (PH) distributions. A special sub-class of phase-type distributions is introduced for the fitting, called generalized hyper-Erlang distributions. The user has to provide only two parameters: the number of moments to match, and the upper bound for the sum of the multiplicities of the eigenvalues of the distribution, which is related to the maximal size of the resulting PH distribution. Given these two parameters, our method obtains all PH distributions that match the target moments and have a Markovian representation up to the given size. From this set of PH distributions the best one can be selected according to any distance function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM algorithm. Scandinavian Journal of Statistics, 419–441 (1996)
Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase type distributions. Stochastic Models 21(2-3), 303–326 (2005)
Bobbio, A., Telek, M.: A benchmark for PH estimation algorithms: results for Acyclic-PH. Stochastic Models 10(3), 661–677 (1994)
Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and their parameter fitting. Performance Evaluation 67(11), 1092–1106 (2010)
Buchholz, P., Telek, M.: Stochastic Petri nets with matrix exponentially distributed firing times. Performance Evaluation 67(12), 1373–1385 (2010)
Casale, G., Zhang, E.Z., Smirni, E.: Interarrival times characterization and fitting for markovian traffic analysis. Numerical Methods for Structured Markov Chains 7461 (2008)
El Abdouni Khayari, R., Sadre, R., Haverkort, B.R.: Fitting world-wide web request traces with the EM-algorithm. Performance Evaluation 52(2), 175–191 (2003)
Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Performance Evaluation 31(3), 245–279 (1998)
Horváth, A., Telek, M.: PhFit: A general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002)
Horváth, G., Telek, M.: On the canonical representation of phase type distributions. Performance Evaluation 66(8), 396–409 (2009)
Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: Mixtures of Erlang distributions of common order. Stochastic Models 5(4), 711–743 (1989)
Mocanu, Ş., Commault, C.: Sparse representations of phase-type distributions. Stochastic Models 15(4), 759–778 (1999)
Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Performance Evaluation 68(10), 938–954 (2011)
Telek, M., Heindl, A.: Matching moments for acyclic discrete and continuous phase-type distributions of second order. International Journal of Simulation Systems, Science & Technology 3(3-4) (2002)
Thummler, A., Buchholz, P., Telek, M.: A novel approach for fitting probability distributions to real trace data with the EM algorithm. In: Proceedings of the International Conference on Dependable Systems and Networks, DSN 2005, pp. 712–721. IEEE (2005)
Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software (TOMS) 25(2), 251–276 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Horváth, G. (2013). Moment Matching-Based Distribution Fitting with Generalized Hyper-Erlang Distributions. In: Dudin, A., De Turck, K. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2013. Lecture Notes in Computer Science, vol 7984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39408-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-39408-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39407-2
Online ISBN: 978-3-642-39408-9
eBook Packages: Computer ScienceComputer Science (R0)