[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Moment Matching-Based Distribution Fitting with Generalized Hyper-Erlang Distributions

  • Conference paper
Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7984))

  • 1251 Accesses

Abstract

This paper describes a novel moment matching based fitting method for phase-type (PH) distributions. A special sub-class of phase-type distributions is introduced for the fitting, called generalized hyper-Erlang distributions. The user has to provide only two parameters: the number of moments to match, and the upper bound for the sum of the multiplicities of the eigenvalues of the distribution, which is related to the maximal size of the resulting PH distribution. Given these two parameters, our method obtains all PH distributions that match the target moments and have a Markovian representation up to the given size. From this set of PH distributions the best one can be selected according to any distance function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM algorithm. Scandinavian Journal of Statistics, 419–441 (1996)

    Google Scholar 

  2. Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase type distributions. Stochastic Models 21(2-3), 303–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bobbio, A., Telek, M.: A benchmark for PH estimation algorithms: results for Acyclic-PH. Stochastic Models 10(3), 661–677 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and their parameter fitting. Performance Evaluation 67(11), 1092–1106 (2010)

    Article  Google Scholar 

  5. Buchholz, P., Telek, M.: Stochastic Petri nets with matrix exponentially distributed firing times. Performance Evaluation 67(12), 1373–1385 (2010)

    Article  Google Scholar 

  6. Casale, G., Zhang, E.Z., Smirni, E.: Interarrival times characterization and fitting for markovian traffic analysis. Numerical Methods for Structured Markov Chains 7461 (2008)

    Google Scholar 

  7. El Abdouni Khayari, R., Sadre, R., Haverkort, B.R.: Fitting world-wide web request traces with the EM-algorithm. Performance Evaluation 52(2), 175–191 (2003)

    Article  Google Scholar 

  8. Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Performance Evaluation 31(3), 245–279 (1998)

    Article  Google Scholar 

  9. Horváth, A., Telek, M.: PhFit: A general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002)

    Google Scholar 

  10. Horváth, G., Telek, M.: On the canonical representation of phase type distributions. Performance Evaluation 66(8), 396–409 (2009)

    Article  Google Scholar 

  11. Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: Mixtures of Erlang distributions of common order. Stochastic Models 5(4), 711–743 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mocanu, Ş., Commault, C.: Sparse representations of phase-type distributions. Stochastic Models 15(4), 759–778 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Performance Evaluation 68(10), 938–954 (2011)

    Article  Google Scholar 

  14. Telek, M., Heindl, A.: Matching moments for acyclic discrete and continuous phase-type distributions of second order. International Journal of Simulation Systems, Science & Technology 3(3-4) (2002)

    Google Scholar 

  15. Thummler, A., Buchholz, P., Telek, M.: A novel approach for fitting probability distributions to real trace data with the EM algorithm. In: Proceedings of the International Conference on Dependable Systems and Networks, DSN 2005, pp. 712–721. IEEE (2005)

    Google Scholar 

  16. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software (TOMS) 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horváth, G. (2013). Moment Matching-Based Distribution Fitting with Generalized Hyper-Erlang Distributions. In: Dudin, A., De Turck, K. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2013. Lecture Notes in Computer Science, vol 7984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39408-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39408-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39407-2

  • Online ISBN: 978-3-642-39408-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics