Abstract
In this paper, we consider the “foreach” sparse recovery problem with failure probability p. The goal of the problem is to design a distribution over m ×N matrices Φ and a decoding algorithm A such that for every x ∈ ℝN, we have with probability at least 1 − p
where x k is the best k-sparse approximation of x.
Our two main results are: (1) We prove a lower bound on m, the number measurements, of Ω(klog(n/k) + log(1/p)) for \(2^{-\Theta(N)}\leqslant p <1\). Cohen, Dahmen, and DeVore [4] prove that this bound is tight. (2) We prove nearly matching upper bounds that also admit sub-linear time decoding. Previous such results were obtained only when p = Ω(1). One corollary of our result is an an extension of Gilbert et al. [6] results for information-theoretically bounded adversaries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baraniuk, R.G., Candes, E., Nowak, R., Vetterli, M.: Compressive sampling. IEEE Signal Processing Magazine 25(2) (2008)
Candès, E.J., Tao, T.: Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)
Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)
Cohen, A., Dahmen, W., De Vore, R.A.: Near Optimal Approximation of Arbitrary Vectors from Highly Incomplete Measurements. Bericht. Inst. für Geometrie und Praktische Mathematik (2007)
Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. J. Amer. Math. Soc. 22(1), 211–231 (2009)
Gilbert, A.C., Hemenway, B., Rudra, A., Strauss, M.J., Wootters, M.: Recovering simple signals. In: ITA, pp. 382–391 (2012)
Gilbert, A.C., Indyk, P.: Sparse recovery using sparse matrices. Proceedings of the IEEE 98(6), 937–947 (2010)
Gilbert, A.C., Li, Y., Porat, E., Strauss, M.J.: Approximate sparse recovery: Optimizing time and measurements. SIAM J. Comput. 41(2), 436–453 (2012)
Gilbert, A.C., Ngo, H., Porat, E., Rudra, A., Strauss, M.J.: L2/L2-foreach sparse recovery with low risk. ArXiv e-prints, arXiv:1304.6232 (April 2013)
Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: Error-correction with optimal redundancy. IEEE Transactions on Information Theory 54(1), 135–150 (2008)
Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767 (1999)
Indyk, P., Ruzic, M.: Near-optimal sparse recovery in the l1 norm. In: FOCS, pp. 199–207 (2008)
Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-memory matrix multiplication. J. Parallel Distrib. Comput. 64(9), 1017–1026 (2004)
Lapidoth, A., Narayan, P.: Reliable communication under channel uncertainty. IEEE Transactions on Information Theory 44, 2148–2177 (1998)
Lehman, A.R., Lehman, E.: Network coding: does the model need tuning? In: SODA, pp. 499–504 (2005)
Lipton, R.J.: A new approach to information theory. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 699–708. Springer, Heidelberg (1994)
Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc. 55, 961–962 (1949)
Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. In: PODS, pp. 37–48 (2012)
Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-recoverable codes and recursion. In: STACS, pp. 230–241 (2012)
Porat, E., Strauss, M.J.: Sublinear time, measurement-optimal, sparse recovery for all. In: SODA, pp. 1215–1227 (2012)
Price, E., Woodruff, D.P.: (1 + ε)-approximate sparse recovery. In: FOCS, pp. 295–304 (2011)
Rudra, A.: List Decoding and Property Testing of Error Correcting Codes. PhD thesis, University of Washington (2007)
Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In: The 37th Annual Allerton Conference on Communication, Control, and Computing, pp. 368–377 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gilbert, A.C., Ngo, H.Q., Porat, E., Rudra, A., Strauss, M.J. (2013). ℓ2/ℓ2-Foreach Sparse Recovery with Low Risk. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)