Abstract
Domain specific (dis-)similarity or proximity measures, employed e.g. in alignment algorithms in bio-informatics, are often used to compare complex data objects and to cover domain specific data properties. Lacking an underlying vector space, data are given as pairwise (dis-)similarities. The few available methods for such data do not scale well to very large data sets. Kernel methods easily deal with metric similarity matrices, also at large scale, but costly transformations are necessary starting with non-metric (dis-) similarities. We propose an integrative combination of Nyström approximation, potential double centering and eigenvalue correction to obtain valid kernel matrices at linear costs. Accordingly effective kernel approaches, become accessible for these data. Evaluation at several larger (dis-)similarity data sets shows that the proposed method achieves much better runtime performance than the standard strategy while keeping competitive model accuracy. Our main contribution is an efficient linear technique, to convert (potentially non-metric) large scale dissimilarity matrices into approximated positive semi-definite kernel matrices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: Concepts and algorithms. JMLR 10, 747–776 (2009)
Cortes, C., Mohri, M., Talwalkar, A.: On the impact of kernel approximation on learning accuracy. JMLR - Proceedings Track 9, 113–120 (2010)
Drineas, P., Mahoney, M.W.: On the nyström method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research 6, 2153–2175 (2005)
Duin, R.P.: PRTools (March 2012), http://www.prtools.org
Duin, R.P.W., Pękalska, E.: Non-euclidean dissimilarities: Causes and informativeness. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 324–333. Springer, Heidelberg (2010)
Farahat, A.K., Ghodsi, A., Kamel, M.S.: A novel greedy algorithm for nyström approximation. JMLR - Proceedings Track 15, 269–277 (2011)
Gisbrecht, A., Mokbel, B., Schleif, F.M., Zhu, X., Hammer, B.: Linear time relational prototype based learning. Journal of Neural Systems 22(5) (2012)
Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11(1), 139–155 (1999)
Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Computation 22(9), 2229–2284 (2010)
Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15(8-9), 945–952 (2002)
Kumar, S., Mohri, M., Talwalkar, A.: On sampling-based approximate spectral decomposition. In: ICML. ACM International Conference Proceeding Series, vol. 382, p. 70. ACM (2009)
Laub, J., Roth, V., Buhmann, J.M., Müller, K.R.: On the information and representation of non-euclidean pairwise data. Pattern Recognition 39(10), 1815–1826 (2006)
Li, W.J., Zhang, Z., Yeung, D.Y.: Latent wishart processes for relational kernel learning. JMLR - Proceedings Track 5, 336–343 (2009)
Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)
Pekalska, E., Duin, R.: The dissimilarity representation for pattern recognition. World Scientific (2005)
Pekalska, E., Duin, R.P.W.: Beyond traditional kernels: Classification in two dissimilarity-based representation spaces. IEEE Transactions on Systems, Man, and Cybernetics Part C 38(6), 729–744 (2008)
Pękalska, E.z., Duin, R.P.W., Günter, S., Bunke, H.: On not making dissimilarities euclidean. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 1145–1154. Springer, Heidelberg (2004)
Platt, J.: Fastmap, metricmap, and landmark mds are all nyström algorithms (2005)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis and Discovery. Cambridge University Press (2004)
de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: NIPS, pp. 705–712. MIT Press (2002)
Tan, J., Kuchibhatla, D., Sirota, F.L.: Tachyon search speeds up retrieval of similar sequences by several orders of magnitude. Bio Informatics (April 23, 2012)
Tsang, I.W., Kocsor, A., Kwok, J.T.: Simpler core vector machines with enclosing balls. In: ICML. ACM International Conference Proceeding Series, vol. 227, pp. 911–918. ACM (2007)
Williams, C.K.I., Seeger, M.: Using the nyström method to speed up kernel machines. In: NIPS, pp. 682–688. MIT Press (2000)
Zhang, K., Kwok, J.T.: Clustered nyström method for large scale manifold learning and dimension reduction. IEEE Transactions on Neural Networks 21(10), 1576–1587 (2010)
Zhang, K., Lan, L., Wang, Z., Moerchen, F.: Scaling up kernel svm on limited resources: A low-rank linearization approach. JMLR - Proceedings Track 22, 1425–1434 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schleif, FM., Gisbrecht, A. (2013). Data Analysis of (Non-)Metric Proximities at Linear Costs. In: Hancock, E., Pelillo, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2013. Lecture Notes in Computer Science, vol 7953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39140-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-39140-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39139-2
Online ISBN: 978-3-642-39140-8
eBook Packages: Computer ScienceComputer Science (R0)