Abstract
This paper presents an exploration engine for text mining and cross-context link discovery, implemented as a web application with a user-friendly interface. The system supports experts in advanced document exploration by facilitating document retrieval, analysis and visualization. It enables document retrieval from public databases like PubMed, as well as by querying the web, followed by document cleaning and filtering through several filtering criteria. Document analysis includes document presentation in terms of statistical and similarity based properties and topic ontology construction through document clustering, while the distinguishing feature of the presented system is its powerful cross context and cross-domain document exploration facility through bridging term discovery aimed at finding potential cross-domain linking terms. Term ranking based on the developed ensemble heuristic enables the expert to focus on cross context terms with greater potential for cross-context link discovery. Additionally, the system supports the expert in finding relevant documents and terms by providing customizable document visualization, a color-based domain separation scheme and highlighted top-ranked bisociative terms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koestler, A.: The act of creation. MacMillan Company, New York (1964)
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining, 307–328 (1996)
Swanson, D.R.: Migraine and magnesium: Eleven neglected connections. Perspectives in Biology and Medicine 31, 526–557 (1988)
Swanson, D.R.: Medical literature as a potential source of new knowledge. Bull. Med. Libr. Assoc. 78/1, 29–37 (1990)
Lindsay, R.K., Gordon, M.D.: Literature-based discovery by lexical statistics. Journal of the American Society for Information Science and Technology 50/7, 574–587 (1999)
Weeber, M., Vos, R., Klein, H., de Jong-van den Berg, L.T.W.: Using concepts in literature-based discovery: Simulating Swanson’s Raynaud–fish oil and migraine–magnesium discoveries. J. Am. Soc. Inf. Sci. Tech. 52/7, 548–557 (2001)
Srinivasan, P.: Text Mining: Generating Hypotheses from MEDLINE. Journal of the American Society for Information Science and Technology 55/5, 396–413 (2004)
Urbančič, T., Petrič, I., Cestnik, B.: RaJoLink: A Method for Finding Seeds of Future Discoveries in Nowadays Literature. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 129–138. Springer, Heidelberg (2009)
Hristovski, D., Peterlin, B., Mitchell, J.A., Humphrey, S.M.: Using literature-based discovery to identify disease candidate genes. Int. J. Med. Inform. 74/2–4, 289–298 (2005)
Yetisgen-Yildiz, M., Pratt, W.: Using statistical and knowledge-based approaches for literature-based discovery. J. Biomed. Inform. 39/6, 600–611 (2006)
Smalheiser, N.R., Swanson, D.R.: Using ARROWSMITH: a computer-assisted approach to formulating and assessing scientific hypotheses. Computer Methods and Programs in Biomedicine 57/3, 149–153 (1998)
Holzinger, A., Yildirim, P., Geier, M., Simonic, K.-M.: Quality-based knowledge discovery from medical text on the Web Example of computational methods in Web intelligence. In: Pasi, G., Bordogna, G., Jain, L.C. (eds.) Qual. Issues in the Management of Web Information. ISRL, vol. 50, pp. 145–158. Springer, Heidelberg (2013)
Dubitzky, W., Kötter, T., Schmidt, O., Berthold, M.R.: Towards creative information exploration based on Koestler’s concept of bisociation. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS, vol. 7250, pp. 11–32. Springer, Heidelberg (2012)
Juršič, M., Cestnik, B., Urbančič, T., Lavrač, N.: Bisociative Literature Mining by Ensemble Heuristics. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS, vol. 7250, pp. 338–358. Springer, Heidelberg (2012)
Juršič, M., Cestnik, B., Urbančič, T., Lavrač, N.: Cross-domain literature mining: Finding bridging concepts with CrossBee. In: Proceedings of the 3rd International Conference on Computational Creativity (2012)
Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., Eisenberg, M.: Design Principles for Tools to Support Creative Thinking. In: Proceedings of the NSF Workshop on Creativity Support Tools, pp. 25–36 (2005)
Shneiderman, B.: Creativity support tools: accelerating discovery and innovation. Communications of the ACM 50/12, 20–32 (2007)
Shneiderman, B.: Creativity Support Tools: A Grand Challenge for HCI Researchers. In: Engineering the User Interface, pp. 1–9. Springer, London (2009)
Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: A cloud cased scientific workflow platform. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 816–819. Springer, Heidelberg (2012)
Urbančič, T., Petrič, I., Cestnik, B., Macedoni-Lukšič, M.: Literature Mining: Towards Better Understanding of Autism. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 217–226. Springer, Heidelberg (2007)
Petrič, I., Urbančič, T., Cestnik, B., Macedoni-Lukšič, M.: Literature mining method RaJoLink for uncovering relations between biomedical concepts. Journal of Biomedical Informatics 42/2, 219–227 (2009)
Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Inf. Process Manag. 24/5, 513–523 (1988)
Fortuna, B., Grobelnik, M., Mladenić, D.: Semi-automatic Data-driven Ontology Construction System. In: Proceedings of the 9th International Multiconference Information Society, pp. 212–220 (2006)
Petrič, I., Cestnik, B., Lavrač, N., Urbančič, T.: Outlier Detection in Cross-Context Link Discovery for Creative Literature Mining. The Computer Journal 55/1, 47–61 (2012)
Muhr, M., Kern, R., Granitzer, M.: Analysis of structural relationships for hierarchical cluster labelling. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 178–185 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Juršič, M., Cestnik, B., Urbančič, T., Lavrač, N. (2013). HCI Empowered Literature Mining for Cross-Domain Knowledge Discovery. In: Holzinger, A., Pasi, G. (eds) Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. HCI-KDD 2013. Lecture Notes in Computer Science, vol 7947. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39146-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-39146-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39145-3
Online ISBN: 978-3-642-39146-0
eBook Packages: Computer ScienceComputer Science (R0)