Abstract
This paper proposes an unsupervised segmentation scheme for cell nuclei. This method computes the cell nuclei by using adaptive active contour modelling which is driven by the morphology method. Firstly, morphology is used to enhance the gray level values of cell nuclei. Then binary cell nuclei is acquired by using an image subtraction technique. Secondly, the masks of cell nuclei are utilized to drive an adaptive region-based active contour modelling to segment the cell nuclei. In addition, an artificial interactive segmentation method is used to generate the ground truth of cell nuclei. This method can have an interest in several applications covering different kinds of cell nuclei. Experiments show that the proposed method can generate accurate segmentation results compared with alternative approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survay of thresholding techniques. Computer Vision, Graphics, and Image Processing 41(2), 233–260 (1988)
Lee, K.M., Street, W.N.: An adaptive resource-allocating network for automatic detection, segmentation, and classification of breast cancer nuclei topic area: image processing and recognition. IEEE Transaction on Neural Network 14(3), 680–687 (2003)
Ruberto, C.D., Dempster, A., Kan, S., Jarra, B.: Analysis of infected blood cell images using morphological operators. Image and Vision Computing 20, 133–146 (2002)
Hu, M., Ping, X., Ding, Y.: Automated cell nucleus segmentation using improved snake. In: Proceedings of the International Conference on Image Processing, pp. 2737–2740 (2004)
Gurcan, M.N., Pan, T., Shimada, H., Saltz, J.: Image analysis for neuroblastoma classification: segmentation of cell nuclei. In: Proceedings of the 28th IEEE EMBS Annual International Conference, pp. 4844–4847 (2006)
Yang, F., Mackey, M.A., Ianzini, F., Gallardo, G., Sonka, M.: Cell segmentation, tracking, and mitosis detection using temporal context. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 302–309. Springer, Heidelberg (2005)
Zhang, B., Zimmer, C., Olivo, M.J.C.: Tracking fluorescent cells with coupled geometric active contours. In: Proceedings of the IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 476–479 (2004)
Yang, L., Meer, P., Foran, D.J.: Unsupervised segmentation based on robust estimation and color active contour models. IEEE Transactions on Information Technology in Biomedicine 9(3), 475–486 (2005)
Li, C., Kao, C., John, C., Ding, Z.: Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Transactions on Image Processing 17(10), 1940–1949 (2008)
Yang, Y., Li, C., Kao, C.-Y., Osher, S.: Split bregman method for minimization of region-scalable fitting energy for image segmentation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part II. LNCS, vol. 6454, pp. 117–128. Springer, Heidelberg (2010)
Goldstein, T., Bresson, X., Osher, S.: Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction. Journal of Scientific Computing 45, 272–293 (2010)
Haralick, R., Sternberg, S., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4), 532–550 (1987)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of denoising and segmentation models. SIAM Journal on Applied Mathematics 66, 1632–1648 (2006)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast Global Minimization of the Active Contour/Snake Model. Journal of Mathematical Imaging and Vision 28, 151–167 (2007)
Robb, R.: Biomedical imaging, visualization, and analysis. Wiley-Liss, USA (2000)
Adobe photoshop, http://en.wikipedia.org/wiki/Adobe_Photoshop
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zeng, Z., Strange, H., Han, C., Zwiggelaar, R. (2013). Unsupervised Cell Nuclei Segmentation Based on Morphology and Adaptive Active Contour Modelling. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_69
Download citation
DOI: https://doi.org/10.1007/978-3-642-39094-4_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39093-7
Online ISBN: 978-3-642-39094-4
eBook Packages: Computer ScienceComputer Science (R0)