Abstract
SAT technology has improved rapidly in recent years, to the point now where it can solve CNF problems of immense size. But solving CNF problems ignores one important fact: there are NO problems that are originally CNF. All the CNF that SAT solvers tackle is the result of modelling some real world problem, and mapping the high-level constraints and decisions modelling the problem into clauses on binary variables. But by throwing away the high level view of the problem SAT solving may have lost a lot of important insight into how the problem is best solved. In this talk I will hope to persuade you that by keeping the original high level model of the problem one can realise immense benefits in solving hard real world problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hentenryck, P.V.: Constraint Satisfaction in Logic Programming. MIT Press (1989)
Marriott, K., Stuckey, P.: Programming with Constraints: an Introduction. MIT Press (1998)
Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and efficient sat encodings of combinatorial problems. Journal of Artificial Intelligence Research 46, 303–341 (2013), http://www.jair.org/papers/paper3809.html
Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)
Abío, I., Stuckey, P.J.: Conflict directed lazy decomposition. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 70–85. Springer, Heidelberg (2012)
Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)
Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Solving RCPSP/max by lazy clause generation. Journal of Scheduling (2012) (online first: August 2012), http://dx.doi.org/10.1007/s10951-012-0285-x
Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362–378. Springer, Heidelberg (2012)
Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 69–84. Springer, Heidelberg (2011)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)
Schulte, C., Lagerkvist, M., Tack, G.: Gecode, http://www.gecode.org/
Perron, L.: OR-tools: Operations research tools developed at Google, https://code.google.com/p/or-tools/
SCIP: Solving constraint integer programs, http://scip.zib.de/scip.shtml
Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo theories. Constraints 17(3), 273–303 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stuckey, P.J. (2013). There Are No CNF Problems. In: Järvisalo, M., Van Gelder, A. (eds) Theory and Applications of Satisfiability Testing – SAT 2013. SAT 2013. Lecture Notes in Computer Science, vol 7962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39071-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-39071-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39070-8
Online ISBN: 978-3-642-39071-5
eBook Packages: Computer ScienceComputer Science (R0)