[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analytical and Numerical Means to Model Transient States in Computer Networks

  • Conference paper
Computer Networks (CN 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 370))

Included in the following conference series:

  • 1592 Accesses

Abstract

Transient queue analysis is needed to model the influence of time-dependent flows on congestion in computer networks. It may be applied to the networks performance evaluation and the analysis of the transmissions quality of service. However, the exact queuing theory gives us only few practically useful results, concerning mainly M/M/1 and M/M/1/N queues. The article presents potentials of three approaches: Markovian queues solved numerically, the diffusion approximation, and fluid-flow approximation. We mention briefly a software we implemented to use these methods and summarise our experience with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Champernowne, D.C.: An elementary method of solution of the queueing problem with a single server and constant parameters. J. R. Statist. Soc. B 18, 125–128 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Takâcs, L.: Introduction to the Theory of Queues. Oxford University Press (1960)

    Google Scholar 

  3. Tarabia, A.M.K.: Transient Analysis of M/M/1/N Queue – An Alternative Approach. Tamkang Journal of Science and Engineering 3(4), 263–266 (2000)

    Google Scholar 

  4. Kotiah, T.C.T.: Approximate transient analysis of some queueing systems. Operations Research 26(2), 334–346 (1978)

    MathSciNet  Google Scholar 

  5. Jones, S.K., Cavin, R.K., Johnston, D.A.: An Efficient Computational Procedure for the Evaluation of the M/M/1 Transient State Occupancy Probabilities. IEEE Trans. on Comm. COM-28(12), 2019–2020 (1980)

    Google Scholar 

  6. Moler, C., van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later! SIAM Review 45(1), 30–49

    Google Scholar 

  7. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Chichester (1994)

    MATH  Google Scholar 

  8. Scientifique, C., Philippe, B., Sidje, R.B.: Transient Solutions of Markov Processes by Krylov Subspaces. In: 2nd International Workshop on the Numerical Solution of Markov Chains (1989)

    Google Scholar 

  9. Sidje, R.B., Burrage, K., McNamara, S.: Inexact Uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sidje, R.B., Stewart, W.J.: A Numerical Study of Large Sparse Matrix Exponentials Arising in Markov Chains. Computational Statistics & Data Analysis 29, 345–368 (1999)

    Article  MATH  Google Scholar 

  11. Sidje, R.B.: Expokit: A Software Package for Computing Matrix Exponentials. ACM, Transactions on Mathematical Software 24(1) (1998)

    Google Scholar 

  12. Numerical computation for Markov chains on GPU: building chains and bounds, algorithms and applications. Project POLONIUM 2012–2013, bilateral cooperation PRISM-Université de Versailles and IITiS PAN, Polish Academy of Sciences

    Google Scholar 

  13. Gelenbe, E.: On Approximate Computer Systems Models. J. ACM 22(2) (1975)

    Google Scholar 

  14. Gelenbe, E., Pujolle, G.: The Behaviour of a Single Queue in a GeneralQueueing Network. Acta Informatica 7(fasc. 2), 123–136 (1976)

    Google Scholar 

  15. Czachórski, T.: A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bulletin of Polish Academy of Sciences, Technical Sciences 41(4) (1993)

    Google Scholar 

  16. Stehfest, H.: Algorithm 368: Numeric inversion of Laplace transform. Comm. of ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  17. Misra, V., Gong, W.-B., Towsley, D.: Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED. In: ACM SIGCOMM (2000)

    Google Scholar 

  18. Liu, Y., Lo Presti, F., Misra, V., Gu, Y.: Fluid Models and Solutions for Large-Scale IP Networks. ACM/SigMetrics (2003)

    Google Scholar 

  19. Czachórski, T., Nycz, M., Nycz, T., Pekergin, F.: Transient states of flows and router queues – a discussion of modelling methods. In: Proc. of International Conference on Networking and Future Internet (ICNFI 2012), Istanbul (April 2012)

    Google Scholar 

  20. Weisser, M.-A., Tomasik, J.: Automatic Induction of Inter-Domain Hierarchy in Randomly Generated Network Topologies. In: 10th Communication and Networking Simulation Symposium CNS 2007 (2007)

    Google Scholar 

  21. Tomasik, J., Weisser, M.-A.: Internet topology on AS-level: model, generation methods and tool. In: 29th IEEE International Performance Computing and Communications Conference (IPCCC 2010) (2010)

    Google Scholar 

  22. Dijkstra’s Algorithm for Network Optimization Using Fibonacci Heaps (September 2009), http://www.codeproject.com/Articles/42561/Dijkstra-s-Algorithm-for-Network-Optimization-Usin

  23. Fibonacci heap implementation (March 2012), http://code.google.com/p/gerardus/source/browse/trunk/matlab/ThirdPartyToolbox/dijkstra.cpp

  24. OMNET++ Community Site, http://www.omnetpp.org

  25. Czachórski, T., Pekergin, F.: Diffusion Approximation as a Modelling Tool. In: Kouvatsos, D.D. (ed.) Next Generation Internet: Performance Evaluation and Applications. LNCS, vol. 5233, pp. 447–476. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czachórski, T., Nycz, M., Nycz, T., Pekergin, F. (2013). Analytical and Numerical Means to Model Transient States in Computer Networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2013. Communications in Computer and Information Science, vol 370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38865-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38865-1_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38864-4

  • Online ISBN: 978-3-642-38865-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics