Abstract
Transient queue analysis is needed to model the influence of time-dependent flows on congestion in computer networks. It may be applied to the networks performance evaluation and the analysis of the transmissions quality of service. However, the exact queuing theory gives us only few practically useful results, concerning mainly M/M/1 and M/M/1/N queues. The article presents potentials of three approaches: Markovian queues solved numerically, the diffusion approximation, and fluid-flow approximation. We mention briefly a software we implemented to use these methods and summarise our experience with it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Champernowne, D.C.: An elementary method of solution of the queueing problem with a single server and constant parameters. J. R. Statist. Soc. B 18, 125–128 (1956)
Takâcs, L.: Introduction to the Theory of Queues. Oxford University Press (1960)
Tarabia, A.M.K.: Transient Analysis of M/M/1/N Queue – An Alternative Approach. Tamkang Journal of Science and Engineering 3(4), 263–266 (2000)
Kotiah, T.C.T.: Approximate transient analysis of some queueing systems. Operations Research 26(2), 334–346 (1978)
Jones, S.K., Cavin, R.K., Johnston, D.A.: An Efficient Computational Procedure for the Evaluation of the M/M/1 Transient State Occupancy Probabilities. IEEE Trans. on Comm. COM-28(12), 2019–2020 (1980)
Moler, C., van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later! SIAM Review 45(1), 30–49
Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Chichester (1994)
Scientifique, C., Philippe, B., Sidje, R.B.: Transient Solutions of Markov Processes by Krylov Subspaces. In: 2nd International Workshop on the Numerical Solution of Markov Chains (1989)
Sidje, R.B., Burrage, K., McNamara, S.: Inexact Uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)
Sidje, R.B., Stewart, W.J.: A Numerical Study of Large Sparse Matrix Exponentials Arising in Markov Chains. Computational Statistics & Data Analysis 29, 345–368 (1999)
Sidje, R.B.: Expokit: A Software Package for Computing Matrix Exponentials. ACM, Transactions on Mathematical Software 24(1) (1998)
Numerical computation for Markov chains on GPU: building chains and bounds, algorithms and applications. Project POLONIUM 2012–2013, bilateral cooperation PRISM-Université de Versailles and IITiS PAN, Polish Academy of Sciences
Gelenbe, E.: On Approximate Computer Systems Models. J. ACM 22(2) (1975)
Gelenbe, E., Pujolle, G.: The Behaviour of a Single Queue in a GeneralQueueing Network. Acta Informatica 7(fasc. 2), 123–136 (1976)
Czachórski, T.: A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bulletin of Polish Academy of Sciences, Technical Sciences 41(4) (1993)
Stehfest, H.: Algorithm 368: Numeric inversion of Laplace transform. Comm. of ACM 13(1), 47–49 (1970)
Misra, V., Gong, W.-B., Towsley, D.: Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED. In: ACM SIGCOMM (2000)
Liu, Y., Lo Presti, F., Misra, V., Gu, Y.: Fluid Models and Solutions for Large-Scale IP Networks. ACM/SigMetrics (2003)
Czachórski, T., Nycz, M., Nycz, T., Pekergin, F.: Transient states of flows and router queues – a discussion of modelling methods. In: Proc. of International Conference on Networking and Future Internet (ICNFI 2012), Istanbul (April 2012)
Weisser, M.-A., Tomasik, J.: Automatic Induction of Inter-Domain Hierarchy in Randomly Generated Network Topologies. In: 10th Communication and Networking Simulation Symposium CNS 2007 (2007)
Tomasik, J., Weisser, M.-A.: Internet topology on AS-level: model, generation methods and tool. In: 29th IEEE International Performance Computing and Communications Conference (IPCCC 2010) (2010)
Dijkstra’s Algorithm for Network Optimization Using Fibonacci Heaps (September 2009), http://www.codeproject.com/Articles/42561/Dijkstra-s-Algorithm-for-Network-Optimization-Usin
Fibonacci heap implementation (March 2012), http://code.google.com/p/gerardus/source/browse/trunk/matlab/ThirdPartyToolbox/dijkstra.cpp
OMNET++ Community Site, http://www.omnetpp.org
Czachórski, T., Pekergin, F.: Diffusion Approximation as a Modelling Tool. In: Kouvatsos, D.D. (ed.) Next Generation Internet: Performance Evaluation and Applications. LNCS, vol. 5233, pp. 447–476. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Czachórski, T., Nycz, M., Nycz, T., Pekergin, F. (2013). Analytical and Numerical Means to Model Transient States in Computer Networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2013. Communications in Computer and Information Science, vol 370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38865-1_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-38865-1_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38864-4
Online ISBN: 978-3-642-38865-1
eBook Packages: Computer ScienceComputer Science (R0)