Abstract
This invited lecture is a survey of our work over the last 12 years or so, dealing with the precise analysis of numerical programs, essentially control programs such as the ones found in the aerospace, nuclear and automotive industry.
Our approach is now based on a rather generic abstract domain, based on “zonotopes” or “affine forms” [7], but with some specificities. For instance, our zonotopic domain provides a functional abstraction [16,13], i.e. an abstraction of the input-output relationships between values of variables, allowing for test generation and modular verification [21]. Also, our domain deals with the real number and the finite precision (for instance, floating-point or fixed-point) semantics [14,17]. It is used in practice in FLUCTUAT [20,9,4] to prove some functional properties of programs, generate (counter-) examples, identify the discrepancy between the real number and the finite precision semantics and its origin etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adjé, A., Bouissou, O., Goubault-Larrecq, J., Goubault, E., Putot, S.: Analyzing probabilistic programs with partially known distributions. In: VSTTE (2013)
Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis. Logical Methods in Computer Science 8(1) (2012)
Boldo, S., Filliâtre, J.C.: Formal Verification of Floating-Point Programs. In: 18th IEEE International Symposium on Computer Arithmetic (June 2007)
Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Ghorbal, K., Lesens, D., Putot, S., Turin, M.: Space software validation using abstract interpretation. In: DASIA (2009)
Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to affine arithmetic. Computing 94(2-4), 189–201 (2012)
Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat: A static analyzer of numerical programs within a continuous environment. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer, Heidelberg (2009)
Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: Proceedings of SIBGRAPI (1993)
Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)
Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009)
Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., Raussen, M.: Trace spaces: An efficient new technique for state-space reduction. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 274–294. Springer, Heidelberg (2012)
Gawlitza, T.M., Seidl, H., Adjé, A., Gaubert, S., Goubault, E.: Abstract interpretation meets convex optimization. J. Symb. Comput. 47(12), 1416–1446 (2012)
Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212–226. Springer, Heidelberg (2010)
Goubault, E., Gall, T.L., Putot, S.: An accurate join for zonotopes, preserving affine input/output relations. In: Proceedings of NSAD 2012, 4th Workshop on Numerical and Symbolic Abstract Domains. ENTCS, vol. 287, pp. 65–76 (2012)
Goubault, É., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)
Goubault, E., Putot, S.: Under-approximations of computations in real numbers based on generalized affine arithmetic. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 137–152. Springer, Heidelberg (2007)
Goubault, E., Putot, S.: A zonotopic framework for functional abstractions. CoRR abs/0910.1763 (2009), http://arxiv.org/abs/0910.1763
Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011)
Goubault, É.: Static analyses of the precision of floating-point operations. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001)
Goubault, E., Haucourt, E.: A practical application of geometric semantics to static analysis of concurrent programs. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 503–517. Springer, Heidelberg (2005)
Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy in control systems: Principles and experiments. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 3–20. Springer, Heidelberg (2008)
Goubault, E., Putot, S., Védrine, F.: Modular static analysis with zonotopes. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 24–40. Springer, Heidelberg (2012)
Menard, D., Rocher, R., Sentieys, O., Simon, N., Didier, L.S., Hilaire, T., Lopez, B., Goubault, E., Putot, S., Védrine, F., Najahi, A., Revy, G., Fangain, L., Samoyeau, C., Lemonnier, F., Clienti, C.: Design of fixed-point embedded systems (defis) french anr project. In: DASIP, pp. 1–2 (2012)
Meurant, G.: The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations (Software, Environments, and Tools). SIAM (2006)
Paige, C.C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. Ph.D. thesis (1971)
Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford University Press (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goubault, E. (2013). Static Analysis by Abstract Interpretation of Numerical Programs and Systems, and FLUCTUAT. In: Logozzo, F., Fähndrich, M. (eds) Static Analysis. SAS 2013. Lecture Notes in Computer Science, vol 7935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38856-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-38856-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38855-2
Online ISBN: 978-3-642-38856-9
eBook Packages: Computer ScienceComputer Science (R0)