[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Medical Subject Heading Assignment Using Output Label Co-occurrence Statistics and Semantic Predications

  • Conference paper
Natural Language Processing and Information Systems (NLDB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7934))

Abstract

Librarians at the National Library of Medicine tag each biomedical abstract to be indexed by their Pubmed information system with terms from the Medical Subject Headings (MeSH) terminology. The MeSH terminology has over 26,000 terms and indexers look at each article’s full text to assign a set of most suitable terms for indexing it. Several recent automated attempts focused on using the article title and abstract text to identify MeSH terms for the corresponding article. Most of these approaches used supervised machine learning techniques that use already indexed articles and the corresponding MeSH terms. In this paper, we present a novel unsupervised approach using named entity recognition, relationship extraction, and output label co-occurrence frequencies of MeSH term pairs from the existing set of 22 million articles already indexed with MeSH terms by librarians at NLM. The main goal of our study is to gauge the potential of output label co-occurrence statistics and relationships extracted from free text in unsupervised indexing approaches. Especially, in biomedical domains, output label co-occurrences are generally easier to obtain than training data involving document and label set pairs owing to the sensitive nature of textual documents containing protected health information. Our methods achieve a micro F-score that is comparable to those obtained using supervised machine learning techniques with training data consisting of document label set pairs. Baseline comparisons reveal strong prospects for further research in exploiting label co-occurrences and relationships extracted from free text in recommending terms for indexing biomedical articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Funk, M., Reid, C.: Indexing consistency in medline. Bulletin of the Medical Library Association 71(2), 176 (1983)

    Google Scholar 

  2. Huang, M., Névéol, A., Lu, Z.: Recommending mesh terms for annotating biomedical articles. J. of the American Medical Informatics Association 18(5), 660–667 (2011)

    Article  Google Scholar 

  3. Aronson, A., Bodenreider, O., Chang, H., Humphrey, S., Mork, J., Nelson, S., Rindflesch, T., Wilbur, W.: The nlm indexing initiative. In: Proceedings of the AMIA Symposium, American Medical Informatics Association, p. 17 (2000)

    Google Scholar 

  4. Aronson, A., Mork, J., Gay, C., Humphrey, S., Rogers, W.: The NLM indexing initiative: Mti medical text indexer. In: Proceedings of MEDINFO (2004)

    Google Scholar 

  5. Yetisgen-Yildiz, M., Pratt, W.: The effect of feature representation on medline document classification. In: AMIA Annual Symposium Proceedings, American Medical Informatics Association, vol. 2005, pp. 849–853 (2005)

    Google Scholar 

  6. Sohn, S., Kim, W., Comeau, D.C., Wilbur, W.J.: Optimal training sets for bayesian prediction of MeSH assignment. Journal of the American Medical Informatics Association 15(4), 546–553 (2008)

    Article  Google Scholar 

  7. Jimeno-Yepes, A., Mork, J.G., Demner-Fushman, D., Aronson, A.R.: A one-size-fits-all indexing method does not exist: Automatic selection based on meta-learning. JCSE 6(2), 151–160 (2012)

    Google Scholar 

  8. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)

    Article  Google Scholar 

  9. Aronson, A.R., Lang, F.M.: An overview of metamap: historical perspective and recent advances. J. American Medical Informatics Assoc. 17(3), 229–236 (2010)

    Google Scholar 

  10. Bodenreider, O., Nelson, S., Hole, W., Chang, H.: Beyond synonymy: exploiting the umls semantics in mapping vocabularies. In: Proceedings of AMIA Symposium, pp. 815–819 (1998)

    Google Scholar 

  11. Rindflesh, T.C., Fiszman, M.: The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J. of Biomedical Informatics 36(6), 462–477 (2003)

    Article  Google Scholar 

  12. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 613–622 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kavuluru, R., He, Z. (2013). Unsupervised Medical Subject Heading Assignment Using Output Label Co-occurrence Statistics and Semantic Predications. In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds) Natural Language Processing and Information Systems. NLDB 2013. Lecture Notes in Computer Science, vol 7934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38824-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38824-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38823-1

  • Online ISBN: 978-3-642-38824-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics