[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Number of Abelian Bordered Words

  • Conference paper
Developments in Language Theory (DLT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7907))

Included in the following conference series:

Abstract

In the literature, many bijections between (labeled) Motzkin paths and various other combinatorial objects are studied. We consider abelian (un)bordered words and show the connection with irreducible symmetric Motzkin paths and paths in ℤ not returning to the origin. This study can be extended to abelian unbordered words over an arbitrary alphabet and we derive expressions to compute the number of these words. In particular, over a 3-letter alphabet, the connection with paths in the triangular lattice is made. Finally, we study the lengths of the abelian unbordered factors occurring in the Thue–Morse word.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnabei, M., Bonetti, F., Silimbani, M.: Restricted involutions and Motzkin paths. Adv. in Appl. Math. 47, 102–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. 1, 191–238 (1994)

    MATH  Google Scholar 

  3. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. Int. J. Found. Comput. Sci. 23, 1035–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Currie, J.D., Saari, K.: Least periods of factors of infinite words. RAIRO Inform. Théor. App. 43, 165–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ehrenfeucht, A., Silberger, D.M.: Periodicity and unbordered segments of words. Disc. Math. 26, 101–109 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goč, D., Henshall, D., Shallit, J.: Automatic theorem-proving in combinatorics on words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Graham, D., Knuth, D.E., Patashnik, O.: Concrete mathematics. A foundation for computer science, 2nd edn. Addison-Wesley Pub. Company (1994)

    Google Scholar 

  8. Harju, T., Nowotka, D.: Periodicity and Unbordered Words: A Proof of Duval’s Conjecture. J. ACM 54 (2007)

    Google Scholar 

  9. Holub, S., Saari, K.: On highly palindromic words. Disc. Appl. Math. 157, 953–959 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guibert, O., Pergola, E.: Enumeration of vexillary involutions which are equal to their mirror/complement. Disc. Math. 224, 281–287 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sapounakis, A., Tsikouras, P.: On k-colored Motzkin words. J. Integer Seq. 7 (2004)

    Google Scholar 

  12. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. The OEIS Foundation Inc., http://oeis.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rampersad, N., Rigo, M., Salimov, P. (2013). On the Number of Abelian Bordered Words. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38771-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38770-8

  • Online ISBN: 978-3-642-38771-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics