[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recompression: Word Equations and Beyond

  • Conference paper
Developments in Language Theory (DLT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7907))

Included in the following conference series:

Abstract

We present the technique of local recompression on the example of word equations. The technique is based on local modification of variables (replacing X by aX or Xa) and replacement of pairs of letters appearing in the equation by a ‘fresh’ letter, which can be seen as a bottom-up building of an SLP (Straight-Line Programme) for the solution of the word equation, i.e. a compression.

Using this technique we give a simple proof that satisfiability of word equations is in PSPACE. Furthermore we sketch the applications for some problems regarding the SLP compressed strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Charatonik, W., Pacholski, L.: Word equations with two variables. In: Abdulrab, H., Pécuchet, J.P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 43–56. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Dąbrowski, R., Plandowski, W.: Solving two-variable word equations. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 408–419. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Dąbrowski, R., Plandowski, W.: On word equations in one variable. Algorithmica 60(4), 819–828 (2011)

    Article  MathSciNet  Google Scholar 

  4. Jeż, A.: Faster fully compressed pattern matching by recompression. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 533–544. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Jeż, A.: Approximation of grammar-based compression via recompression. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer, Heidelberg (2013)

    Google Scholar 

  6. Jeż, A.: The complexity of compressed membership problems for finite automata. Theory of Computing Systems, 1–34 (2013), http://dx.doi.org/10.1007/s00224-013-9443-6

  7. Jeż, A.: One-variable word equations in linear time. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS. Springer, Heidelberg (to appear, 2013)

    Google Scholar 

  8. Kościelski, A., Pacholski, L.: Complexity of Makanin’s algorithm. J. ACM 43(4), 670–684 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compression Conference, pp. 296–305. IEEE Computer Society (1999)

    Google Scholar 

  10. Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology 4(2), 241–299 (2012)

    MathSciNet  Google Scholar 

  12. Lohrey, M., Mathissen, C.: Compressed membership in automata with compressed labels. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 275–288. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matematicheskii Sbornik 2(103), 147–236 (1977) (in Russian)

    Google Scholar 

  14. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Obono, S.E., Goralcik, P., Maksimenko, M.N.: Efficient solving of the word equations in one variable. In: Prívara, I., Rovan, B., Ruzicka, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 336–341. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  16. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3), 483–496 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Plandowski, W.: An efficient algorithm for solving word equations. In: Kleinberg, J.M. (ed.) STOC, pp. 467–476. ACM (2006)

    Google Scholar 

  18. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution of words equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. J. Discrete Algorithms 3(2-4), 416–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeż, A. (2013). Recompression: Word Equations and Beyond. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38771-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38770-8

  • Online ISBN: 978-3-642-38771-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics