[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7924))

Abstract

A set of edges in a graph G is independent if no two elements are contained in a clique of G. The edge-independent set problem asks for the maximal cardinality of independent sets of edges. We show that the edge-clique graphs of cocktail parties have unbounded rankwidth. There is an elegant formula that solves the edge-independent set problem for graphs of rankwidth one, which are exactly distance-hereditary graphs, and related classes of graphs. We present a PTAS for the edge-independent set problem on planar graphs and show that the problem is polynomial for planar graphs without triangle separators. The set of edges of a bipartite graph is edge-independent. We show that the edge-independent set problem remains NP-complete for graphs in which every neighborhood is bipartite, i.e., the graphs without odd wheels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albertson, M., Collins, K.: Duality and perfection for edges in cliques. Journal of Combinatorial Theory, Series B 36, 298–309 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alcón, L., Faria, L., de Figueiredo, C., Gutierrez, M.: The complexity of clique graph recognition. Theoretical Computer Science 410, 2072–2083 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anand, P., Escuadro, H., Gera, R., Hartke, S., Stolee, D.: On the hardness of recognizing triangular line graphs. Discrete Mathematics 312, 2627–2638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  5. Bandelt, H., Mulder, H.: Distance-hereditary graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brouwer, A., Rees, G.: More mutually orthogonal Latin squares. Discrete Mathematics 39, 181–263 (1982)

    Article  Google Scholar 

  7. Cerioli, M.: Clique graphs and edge-clique graphs. Electronic Notes in Discrete Mathematics 13, 34–37 (2003)

    Article  MathSciNet  Google Scholar 

  8. Cerioli, M., Szwarcfiter, J.: A characterization of edge clique graphs. Ars Combinatorica 60, 287–292 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Cerioli, M., Szwarcfiter, J.: Edge clique graphs and some classes of chordal graphs. Discrete Mathematics 242, 31–39 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chowla, S., Erdös, P., Straus, E.: On the maximal number of pairwise orthogonal Latin squares of a given order. Canadian Journal of Mathematics 12, 204–208 (1960)

    Article  MATH  Google Scholar 

  11. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM Journal on Computing 14, 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for edge clique cover are probably optimal. In: Proceedings SODA 2013, ACM-SIAM, pp. 1044–1053 (2013)

    Google Scholar 

  13. Dvořák, Z., Král, D.: Classes of graphs with small rank decompositions are χ-bounded. European Journal of Combinatorics 33, 679–683 (2012)

    Article  MATH  Google Scholar 

  14. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ganian, R., Hliněný, P.: Better polynomial algorithms on graphs of bounded rank-width. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 266–277. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Gao, J., Kloks, T., Poon, S.-H.: Triangle-partitioning edges of planar graphs, toroidal graphs and k-planar graphs. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 194–205. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Gargano, L., Körner, J., Vaccaro, U.: Sperner capacities. Graphs and Combinatorics 9, 31–46 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gregory, D.A., Pullman, N.J.: On a clique covering problem of Orlin. Discrete Mathematics 41, 97–99 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gyárfás, A.: A simple lower bound on edge covering by cliques. Discrete Mathematics 85, 103–104 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haxell, P., Kostoschka, A., Thomassé, S.: A stability theorem on fractional covering of triangles by edges. European Journal of Combinatorics 33, 799–806 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Howork, E.: A characterization of distance-hereditary graphs. The Quarterly Journal of Mathematics 28, 417–420 (1977)

    Article  Google Scholar 

  22. Jamison, B., Olariu, S.: A unique tree representation for P 4-sparse graphs. Discrete Applied Mathematics 35, 115–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kong, J., Wu, Y.: On economical set representations of graphs. Discrete Mathematics and Theoretical Computer Science 11, 71–96 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Körner, J.: Intersection number and capacities of graphs. Discrete Mathematics 142, 169–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, F., Zhang, J.: Finding orthogonal Latin squares using finite model searching tools. Science China Information Sciences 56, 1–9 (2013)

    Google Scholar 

  26. Lakshmanan, S., Bujtás, C., Tuza, Z.: Small edge sets meeting all triangles of a graph. Graphs and Combinatorics 28, 381–392 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lakshmanan, S., Vijayakumar, A.: Clique irreducibility of some iterative classes of graphs. Discussiones Mathematicae Graph Theory 28, 307–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Le, V.B.: Gallai graphs and anti-Gallai graphs. Discrete Mathematics 159, 179–189 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mujuni, E., Rosamond, F.: Parameterized complexity of the clique partition problem. In: Harland, J., Manyem, P. (eds.) Proceedings CATS 2008. ACS, CRPIT series, vol. 77, pp. 75–78 (2008)

    Google Scholar 

  30. Oum, S.: Graphs of bounded rankwidth. PhD thesis, Princeton University (2005)

    Google Scholar 

  31. Park, B., Kim, S., Sano, Y.: The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares. Discrete Mathematics 309, 6464–6469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Prisner, E.: Graph dynamics. Pitman Research Notes in Mathematics Series. Longman, Essex (1995)

    MATH  Google Scholar 

  33. Raychaudhuri, A.: Intersection number and edge clique graphs of chordal and strongly chordal graphs. Congressus Numerantium 67, 197–204 (1988)

    MathSciNet  Google Scholar 

  34. Raychaudhuri, A.: Edge clique graphs of some important classes of graphs. Ars Combinatoria 32, 269–278 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Wilson, R.: Concerning the number of mutually orthogonal Latin squares. Discrete Mathematics 9, 181–198 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kloks, T., Liu, CH., Poon, SH. (2013). On Edge-Independent Sets. In: Fellows, M., Tan, X., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38756-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38756-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38755-5

  • Online ISBN: 978-3-642-38756-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics