Abstract
A set of edges in a graph G is independent if no two elements are contained in a clique of G. The edge-independent set problem asks for the maximal cardinality of independent sets of edges. We show that the edge-clique graphs of cocktail parties have unbounded rankwidth. There is an elegant formula that solves the edge-independent set problem for graphs of rankwidth one, which are exactly distance-hereditary graphs, and related classes of graphs. We present a PTAS for the edge-independent set problem on planar graphs and show that the problem is polynomial for planar graphs without triangle separators. The set of edges of a bipartite graph is edge-independent. We show that the edge-independent set problem remains NP-complete for graphs in which every neighborhood is bipartite, i.e., the graphs without odd wheels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albertson, M., Collins, K.: Duality and perfection for edges in cliques. Journal of Combinatorial Theory, Series B 36, 298–309 (1984)
Alcón, L., Faria, L., de Figueiredo, C., Gutierrez, M.: The complexity of clique graph recognition. Theoretical Computer Science 410, 2072–2083 (2009)
Anand, P., Escuadro, H., Gera, R., Hartke, S., Stolee, D.: On the hardness of recognizing triangular line graphs. Discrete Mathematics 312, 2627–2638 (2012)
Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)
Bandelt, H., Mulder, H.: Distance-hereditary graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)
Brouwer, A., Rees, G.: More mutually orthogonal Latin squares. Discrete Mathematics 39, 181–263 (1982)
Cerioli, M.: Clique graphs and edge-clique graphs. Electronic Notes in Discrete Mathematics 13, 34–37 (2003)
Cerioli, M., Szwarcfiter, J.: A characterization of edge clique graphs. Ars Combinatorica 60, 287–292 (2001)
Cerioli, M., Szwarcfiter, J.: Edge clique graphs and some classes of chordal graphs. Discrete Mathematics 242, 31–39 (2002)
Chowla, S., Erdös, P., Straus, E.: On the maximal number of pairwise orthogonal Latin squares of a given order. Canadian Journal of Mathematics 12, 204–208 (1960)
Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM Journal on Computing 14, 926–934 (1985)
Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for edge clique cover are probably optimal. In: Proceedings SODA 2013, ACM-SIAM, pp. 1044–1053 (2013)
Dvořák, Z., Král, D.: Classes of graphs with small rank decompositions are χ-bounded. European Journal of Combinatorics 33, 679–683 (2012)
Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)
Ganian, R., Hliněný, P.: Better polynomial algorithms on graphs of bounded rank-width. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 266–277. Springer, Heidelberg (2009)
Gao, J., Kloks, T., Poon, S.-H.: Triangle-partitioning edges of planar graphs, toroidal graphs and k-planar graphs. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 194–205. Springer, Heidelberg (2013)
Gargano, L., Körner, J., Vaccaro, U.: Sperner capacities. Graphs and Combinatorics 9, 31–46 (1993)
Gregory, D.A., Pullman, N.J.: On a clique covering problem of Orlin. Discrete Mathematics 41, 97–99 (1982)
Gyárfás, A.: A simple lower bound on edge covering by cliques. Discrete Mathematics 85, 103–104 (1990)
Haxell, P., Kostoschka, A., Thomassé, S.: A stability theorem on fractional covering of triangles by edges. European Journal of Combinatorics 33, 799–806 (2012)
Howork, E.: A characterization of distance-hereditary graphs. The Quarterly Journal of Mathematics 28, 417–420 (1977)
Jamison, B., Olariu, S.: A unique tree representation for P 4-sparse graphs. Discrete Applied Mathematics 35, 115–129 (1992)
Kong, J., Wu, Y.: On economical set representations of graphs. Discrete Mathematics and Theoretical Computer Science 11, 71–96 (2009)
Körner, J.: Intersection number and capacities of graphs. Discrete Mathematics 142, 169–184 (1995)
Ma, F., Zhang, J.: Finding orthogonal Latin squares using finite model searching tools. Science China Information Sciences 56, 1–9 (2013)
Lakshmanan, S., Bujtás, C., Tuza, Z.: Small edge sets meeting all triangles of a graph. Graphs and Combinatorics 28, 381–392 (2012)
Lakshmanan, S., Vijayakumar, A.: Clique irreducibility of some iterative classes of graphs. Discussiones Mathematicae Graph Theory 28, 307–321 (2008)
Le, V.B.: Gallai graphs and anti-Gallai graphs. Discrete Mathematics 159, 179–189 (1996)
Mujuni, E., Rosamond, F.: Parameterized complexity of the clique partition problem. In: Harland, J., Manyem, P. (eds.) Proceedings CATS 2008. ACS, CRPIT series, vol. 77, pp. 75–78 (2008)
Oum, S.: Graphs of bounded rankwidth. PhD thesis, Princeton University (2005)
Park, B., Kim, S., Sano, Y.: The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares. Discrete Mathematics 309, 6464–6469 (2009)
Prisner, E.: Graph dynamics. Pitman Research Notes in Mathematics Series. Longman, Essex (1995)
Raychaudhuri, A.: Intersection number and edge clique graphs of chordal and strongly chordal graphs. Congressus Numerantium 67, 197–204 (1988)
Raychaudhuri, A.: Edge clique graphs of some important classes of graphs. Ars Combinatoria 32, 269–278 (1991)
Wilson, R.: Concerning the number of mutually orthogonal Latin squares. Discrete Mathematics 9, 181–198 (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kloks, T., Liu, CH., Poon, SH. (2013). On Edge-Independent Sets. In: Fellows, M., Tan, X., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38756-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-38756-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38755-5
Online ISBN: 978-3-642-38756-2
eBook Packages: Computer ScienceComputer Science (R0)