[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Risk Prediction of Femoral Neck Osteoporosis Using Machine Learning and Conventional Methods

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7903))

Included in the following conference series:

  • 2424 Accesses

Abstract

Screening femoral neck osteoporosis is important to prevent fractures of the femoral neck. We developed machine learning models with the aim of more accurately identifying the risk of femoral neck osteoporosis in postmenopausal women and compared those to a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records based on the Korea National Health and Nutrition Surveys. The training set was used to construct models based on popular machine learning algorithms using various predictors associated with osteoporosis. The learning models were compared to OST. Support vector machines (SVM) had better performance than OST. Validation on the test set showed that SVM predicted femoral neck osteoporosis with an area under the curve of the receiver operating characteristic of 0.874, accuracy of 80.4%, sensitivity of 81.3%, and specificity of 80.5%. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151(1-2), 155–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Cos Juez, F.J., Suárez-Suárez, M.A., Sánchez Lasheras, F., Murcia-Mazón, A.: Application of neural networks to the study of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women. Math. Comput. Model. 54(7-8), 1665–1670 (2011)

    Article  Google Scholar 

  6. Dreiseitl, S., Ohno-Machado, L.: Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5-6), 352–359 (2002)

    Article  Google Scholar 

  7. Hsieh, C.H., Lu, R.H., Lee, N.H., Chiu, N.T., Hsu, M.H., Li, Y.C.: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149(1), 87–93 (2011)

    Article  Google Scholar 

  8. Kanis, J.A.: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos. Int. 4(6), 368–381 (1994)

    Article  Google Scholar 

  9. Khosla, S., Melton III, L.J.: Osteopenia. N. Engl. J. Med. 356, 2293–2300 (2007)

    Article  Google Scholar 

  10. Koh, L.K., Sedrine, W.B., Torralba, T.P., Kung, A., Fujiwara, S., Chan, S.P., Huang, Q.R., Rajatanavin, R., Tsai, K.S., Park, H.M., Reginster, J.Y.: A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos. Int. 12(8), 699–705 (2001)

    Article  Google Scholar 

  11. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995)

    Google Scholar 

  12. Korean National Statistical Office (2010), http://www.kosis.kr

  13. Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: A review. GESTS Int. T. Comput. Sci. Eng. 30, 25–36 (2006)

    Google Scholar 

  14. Lix, L.M., Yogendran, M.S., Leslie, W.D., Shaw, S.Y., Baumgartner, R., Bowman, C., Metge, C., Gumel, A., Hux, J., James, R.C.: Using multiple data features improved the validity of osteoporosis case ascertainment from administrative databases. J. Clin. Epidemiol. 61(12), 1250–1260 (2008)

    Article  Google Scholar 

  15. Marshall, D., Johnell, O., Wedel, H.: Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041), 1254–1259 (1996)

    Article  Google Scholar 

  16. Nayak, S., Roberts, M.S., Greenspan, S.L.: Cost-effectiveness of different screening strategies for osteoporosis in postmenopausal women. Ann. Intern. Med. 155(11), 751–761 (2011)

    Article  Google Scholar 

  17. Ordóñez, C., Matías, J.M., de Cos Juez, J.F., García, P.J.: Machine learning techniques applied to the determination of osteoporosis incidence in post-menopausal women. Math. Comput. Model. 50(5-6), 673–679 (2009)

    Article  MATH  Google Scholar 

  18. Raisz, L.G.: Screening for osteoporosis. N. Engl. J. Med. 353, 164–171 (2005)

    Article  Google Scholar 

  19. Richy, F., Gourlay, M., Ross, P.D., Sen, S.S., Radican, L., Ceulaer, F.D., Sedrine, W.B., Ethgen, O., Bruyere, O., Reginster, J.Y.: Validation and comparative evaluation of the osteoporosis self-assessment tool (OST) in a Caucasian population from Belgium. QJM 97(1), 39–46 (2004)

    Article  Google Scholar 

  20. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  21. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007)

    Article  MATH  Google Scholar 

  22. Walid, M., Ahmad, S., Fadi, C., Dima, R.: Intelligent predictive osteoporosis system. Int. J. Comput. Appl. 32, 28–30 (2011)

    Google Scholar 

  23. Yeun, E.J.: A study on the health promoting lifestyle practices of middle-aged women in Korea. J. Korean Soc. Health Educ. Promo. 17(1), 41–59 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoo, T.K., Kim, S.K., Oh, E., Kim, D.W. (2013). Risk Prediction of Femoral Neck Osteoporosis Using Machine Learning and Conventional Methods. In: Rojas, I., Joya, G., Cabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38682-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38682-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38681-7

  • Online ISBN: 978-3-642-38682-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics