[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Robust Sensor and Actuator Fault Diagnosis with GMDH Neural Networks

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7902))

Included in the following conference series:

  • 2697 Accesses

Abstract

The uncertainty of neural model influences the effectiveness of the neural model-based FDI and FTC systems. The application of the GMDH approach to the state-space neural model structure selection allows reducing the model uncertainty. The state-space representation of the neural model enables to develop a new technique of estimation of the neural model inputs based on the RUIF. This result enables performing robust fault detection and isolation of the actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ding, S.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer, Heidelberg (2008)

    Google Scholar 

  2. Korbicz, J., Kościelny, J.: Modeling, Diagnostics and Process Control: Implementation in the DiaSter System. Springer, Berlin (2010)

    Google Scholar 

  3. Mrugalski, M.: An unscented kalman filter in designing dynamic gmdh neural networks for robust fault detection. International Journal of Applied Mathematics and Computer Science 23(1), 157–169 (2013)

    Article  MathSciNet  Google Scholar 

  4. Mrugalski, M., Witczak, M.: State-space gmdh neural networks for actuator robust fault diagnosis. Advances in Electrical and Computer Engin. 12(3), 65–72 (2012)

    Article  Google Scholar 

  5. De Oca, S., Puig, V., Witczak, M., Dziekan, Ł.: Fault-tolerant control strategy for actuator faults using lpv techniques: Application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science 22(1), 161–171 (2012)

    MATH  MathSciNet  Google Scholar 

  6. Niemann, H.: A model-based approach to fault-tolerant control. International Journal of Applied Mathematics and Computer Science 22(1), 67–86 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Noura, H., Theilliol, D., Ponsart, J., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, London (2009)

    Book  Google Scholar 

  8. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, NY (2009)

    Google Scholar 

  9. Mrugalski, M., Witczak, M., Korbicz, J.: Confidence estimation of the multi-layer perceptron and its application in fault detection systems. Engineering Applications of Artificial Intelligence 21(6), 895–906 (2008)

    Article  Google Scholar 

  10. Patan, K., Witczak, M., Korbicz, J.: Towards robustness in neural network based fault diagnosis. International Journal of Applied Mathematics and Computer Science 18(4), 443–454 (2008)

    MATH  Google Scholar 

  11. Ivakhnenko, A., Mueller, J.: Self-organization of nets of active neurons. System Analysis Modelling Simulation 20, 93–106 (1995)

    Google Scholar 

  12. Korbicz, J., Mrugalski, M.: Confidence estimation of gmdh neural networks and its application in fault detection system. International Journal of System Science 39(8), 783–800 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Witczak, M., Korbicz, J., Mrugalski, M., Patton, R.: A gmdh neural network based approach to robust fault detection and its application to solve the damadics benchmark problem. Control Engineering Practice 14(6), 671–683 (2006)

    Article  Google Scholar 

  14. Teixeira, B., Torres, L., Aguirre, L., Bernstein, D.: On unscented kalman filtering with state interval constraints. Journal of Process Control 20(1), 45–57 (2010)

    Article  Google Scholar 

  15. Korbicz, J., Witczak, M., Puig, V.: Lmi-based strategies for designing observers and unknown input observers for non-linear discrete-time systems. Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1), 31–42 (2007)

    MATH  Google Scholar 

  16. Witczak, M., Pretki, P.: Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms. International Journal of Control 80(5), 749–762 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zemouche, A., Boutayeb, M., Iulia Bara, G.: Observer for a class of Lipschitz systems with extension to \(\mathcal{H}_{\infty}\) performance analysis. Systems and Control Letters 57(1), 18–27 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mrugalski, M., Arinton, E., Korbicz, J.: Dynamic gmdh type neural networks. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 698–703. Physica-Verlag, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Mrugalski, M., Korbicz, J.: Least mean square vs. outer bounding ellipsoid algorithm in confidence estimation of the gmdh neural networks. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007, Part II. LNCS, vol. 4432, pp. 19–26. Springer, Heidelberg (2007)

    Google Scholar 

  20. Lee, T., Jiang, Z.: On uniform global asymptotic stability of nonlinear discrete-time systems with applications. IEEE Trans. Automatic Control 51(10), 1644–1660 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Witczak, M., Mrugalski, M., Korbicz, J. (2013). Robust Sensor and Actuator Fault Diagnosis with GMDH Neural Networks. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics