Abstract
The uncertainty of neural model influences the effectiveness of the neural model-based FDI and FTC systems. The application of the GMDH approach to the state-space neural model structure selection allows reducing the model uncertainty. The state-space representation of the neural model enables to develop a new technique of estimation of the neural model inputs based on the RUIF. This result enables performing robust fault detection and isolation of the actuators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ding, S.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer, Heidelberg (2008)
Korbicz, J., Kościelny, J.: Modeling, Diagnostics and Process Control: Implementation in the DiaSter System. Springer, Berlin (2010)
Mrugalski, M.: An unscented kalman filter in designing dynamic gmdh neural networks for robust fault detection. International Journal of Applied Mathematics and Computer Science 23(1), 157–169 (2013)
Mrugalski, M., Witczak, M.: State-space gmdh neural networks for actuator robust fault diagnosis. Advances in Electrical and Computer Engin. 12(3), 65–72 (2012)
De Oca, S., Puig, V., Witczak, M., Dziekan, Ł.: Fault-tolerant control strategy for actuator faults using lpv techniques: Application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science 22(1), 161–171 (2012)
Niemann, H.: A model-based approach to fault-tolerant control. International Journal of Applied Mathematics and Computer Science 22(1), 67–86 (2012)
Noura, H., Theilliol, D., Ponsart, J., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, London (2009)
Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, NY (2009)
Mrugalski, M., Witczak, M., Korbicz, J.: Confidence estimation of the multi-layer perceptron and its application in fault detection systems. Engineering Applications of Artificial Intelligence 21(6), 895–906 (2008)
Patan, K., Witczak, M., Korbicz, J.: Towards robustness in neural network based fault diagnosis. International Journal of Applied Mathematics and Computer Science 18(4), 443–454 (2008)
Ivakhnenko, A., Mueller, J.: Self-organization of nets of active neurons. System Analysis Modelling Simulation 20, 93–106 (1995)
Korbicz, J., Mrugalski, M.: Confidence estimation of gmdh neural networks and its application in fault detection system. International Journal of System Science 39(8), 783–800 (2008)
Witczak, M., Korbicz, J., Mrugalski, M., Patton, R.: A gmdh neural network based approach to robust fault detection and its application to solve the damadics benchmark problem. Control Engineering Practice 14(6), 671–683 (2006)
Teixeira, B., Torres, L., Aguirre, L., Bernstein, D.: On unscented kalman filtering with state interval constraints. Journal of Process Control 20(1), 45–57 (2010)
Korbicz, J., Witczak, M., Puig, V.: Lmi-based strategies for designing observers and unknown input observers for non-linear discrete-time systems. Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1), 31–42 (2007)
Witczak, M., Pretki, P.: Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms. International Journal of Control 80(5), 749–762 (2007)
Zemouche, A., Boutayeb, M., Iulia Bara, G.: Observer for a class of Lipschitz systems with extension to \(\mathcal{H}_{\infty}\) performance analysis. Systems and Control Letters 57(1), 18–27 (2008)
Mrugalski, M., Arinton, E., Korbicz, J.: Dynamic gmdh type neural networks. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 698–703. Physica-Verlag, Heidelberg (2003)
Mrugalski, M., Korbicz, J.: Least mean square vs. outer bounding ellipsoid algorithm in confidence estimation of the gmdh neural networks. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007, Part II. LNCS, vol. 4432, pp. 19–26. Springer, Heidelberg (2007)
Lee, T., Jiang, Z.: On uniform global asymptotic stability of nonlinear discrete-time systems with applications. IEEE Trans. Automatic Control 51(10), 1644–1660 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Witczak, M., Mrugalski, M., Korbicz, J. (2013). Robust Sensor and Actuator Fault Diagnosis with GMDH Neural Networks. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-38679-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38678-7
Online ISBN: 978-3-642-38679-4
eBook Packages: Computer ScienceComputer Science (R0)