[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hesitant Neural Gas for Supervised and Semi-supervised Classification

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7894))

Included in the following conference series:

  • 1834 Accesses

Abstract

Neural Gas is a neural network algorithm for vector quantization. It has not arbitrary established network topology, instead its topology is changing dynamically during training process. Originally, the Neural Gas is an unsupervised algorithm. However, there are several extensions that enables Neural Gas to use the information about sample’s class. This significantly improves the accuracy of obtained clusters. Therefore, the Neural Gas was successfully used in classification problems. In this paper we present a novel method to learn the Neural Gas with fully and partially labelled data sets. Proposed method simulates the neuron’s hesitation between membership to the classes during the learning. Hesitation process is based on neuron’s class membership probability and Metropolis-Hastings algorithm. The proposed method was compared with state-of-art extensions of Neural Gas on supervised and semi-supervised classification tasks on benchmark data sets. Experimental results yield better or the same classification accuracy on both types of supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.J.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2007)

    Google Scholar 

  2. Du, K.-L.: Clustering: A neural network approach. Neural Networks 23, 89–107 (2010)

    Article  Google Scholar 

  3. Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Advances in Neural Information Processing Systems (NIPS 1994), pp. 625–632 (1994)

    Google Scholar 

  4. Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised Batch Neural Gas. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 33–45. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Hammer, B., Strickert, M., Villmann, T.: Supervised Neural Gas with General Similarity Measure. Neural Processing Letters 21, 21–44 (2005)

    Article  Google Scholar 

  6. Hastings, W.K.: Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  7. Herrmann, M., Villmann, T.: Vector Quantization by Optimal Neural Gas. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 625–630. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Kästner, M., Villmann, T.: Fuzzy Supervised Self-Organizing Map for Semi-supervised Vector Quantization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 256–265. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  11. Martinetz, T., Schulten, K.: A Neural-Gas Network Learns Topologies. Artificial Neural Networks 1, 397–402 (1991)

    Google Scholar 

  12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of State Calculations by Fast Computing Machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  13. Midenet, S., Grumbach, A.: Learning Associations by Self-Organization: The LASSO model. Neurocomputing 6, 343–361 (1994)

    Article  Google Scholar 

  14. Möller, R., Hoffmann, H.: An extension of neural gas to local PCA. Neurocomputing 62, 305–326 (2004)

    Article  Google Scholar 

  15. Płoński, P., Zaremba, K.: Self-Organising Maps for Classification with Metropolis-Hastings Algorithm for Supervision. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 149–156. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Schenck, W., Welsch, R., Kaiser, A., Möller, R.: Adaptive learning rate control for neural gas principal component analysis. In: European Symposium on Artificial Neural Networks (ESANN 2010), pp. 213–218. d-side pub. (2010)

    Google Scholar 

  17. Schleif, F.-M., Villmann, T., Hammer, B.: Supervised Neural Gas for Classification of Functional Data and Its Application to the Analysis of Clinical Proteom Spectra. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1036–1044. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Villmann, T., Geweniger, T., Kästner, M., Lange, M.: Fuzzy Neural Gas for Unsupervised Vector Quantization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 350–358. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Villmann, T., Hammer, B., Schleif, F.-M., Geweniger, T., Hermann, W.: Fuzzy classification by fuzzy labeled neural gas. Neural Networks 19, 772–779 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Płoński, P., Zaremba, K. (2013). Hesitant Neural Gas for Supervised and Semi-supervised Classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38658-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38657-2

  • Online ISBN: 978-3-642-38658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics