[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Neural Network Approximation of L-MCRS Dynamics for Reinforcement Learning Experiments

  • Conference paper
Natural and Artificial Computation in Engineering and Medical Applications (IWINAC 2013)

Abstract

The autonomous learning of the control of Linked Multicomponent Robotic Systems (L-MCRS) is an open research issue. We are pursuing the application of Reinforcement Learning algorithms to achieve such control. However, accurate simulations needed for RL trials are time consuming, so that the process of training and validation becomes excesively long. In order to obtain results in affordable time, we perform the approximation of the detailed dynamic model of the L-MCRS by Artificial Neural Networks (ANN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duro, R., Graña, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Information Sciences 180(14), 2635–2648 (2010)

    Article  Google Scholar 

  2. Echegoyen, Z., Villaverde, I., Moreno, R., Graña, M., d’Anjou, A.: Linked multi-component mobile robots: modeling, simulation and control. Robotics and Autonomous Systems 58(12, SI), 1292–1305 (2010)

    Article  Google Scholar 

  3. Fernandez-Gauna, B., Lopez-Guede, J., Zulueta, E., Graña, M.: Learning hose transport control with q-learning. Neural Network World 20(7), 913–923 (2010)

    Google Scholar 

  4. Fernandez-Gauna, B., Lopez-Guede, J.M., Graña, M.: Towards concurrent Q-learning on linked multi-component robotic systems. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS, vol. 6679, pp. 463–470. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Lopez-Guede, J.M., Fernandez-Gauna, B., Graña, M., Zulueta, E.: Empirical study of Q-learning based elemental hose transport control. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS, vol. 6679, pp. 455–462. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Fernandez-Gauna, B., Lopez-Guede, J., Zulueta, E., Graña, M.: Further results learning hose transport control with q-learning. Journal of Physical Agents (2012) (in press)

    Google Scholar 

  7. Fernandez-Gauna, B., Lopez-Guede, J., Zulueta, E., Graña, M.: Improving the control of single robot hose transport. Cybernetics and Systems 43(4), 261–275 (2012)

    Article  Google Scholar 

  8. Lopez-Guede, J.M., Fernandez-Gauna, B., Zulueta, E.: Towards a real time simulation of linked multi-component robotic systems. In: KES, pp. 2019–2027 (2012)

    Google Scholar 

  9. Lopez-Guede, J.M., Fernandez-Gauna, B., Graña, M.: State-action value modeled by elm in reinforcement learning for hose control problems. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems (submitted, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez-Guede, J.M., Graña, M., Ramos-Hernanz, J.A., Oterino, F. (2013). A Neural Network Approximation of L-MCRS Dynamics for Reinforcement Learning Experiments. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Computation in Engineering and Medical Applications. IWINAC 2013. Lecture Notes in Computer Science, vol 7931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38622-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38622-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38621-3

  • Online ISBN: 978-3-642-38622-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics