Abstract
In this paper we tackle the automatic detection of struts elements (metallic braces of a stent device) in Intravascular Ultrasound (IVUS) sequences. The proposed method is based on context-aware classification of IVUS images, where we use Multi-Class Multi-Scale Stacked Sequential Learning (M2SSL). Additionally, we introduce a novel technique to reduce the amount of required contextual features. The comparison with binary and multi-class learning is also performed, using a dataset of IVUS images with struts manually annotated by an expert. The best performing configuration reaches a F-measure F = 63.97% .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yoon, H.J., Hur, S.H.: Optimization of stent deployment by intravascular ultrasound. Korean J. Intern. Med. 27(1), 30–38 (2012)
Canero, C., Pujol, O., Radeva, P., Toledo, R., Saludes, J., Gil, D., Villanueva, J., Mauri, J., Garcia, B., Gomez, J.: Optimal stent implantation: three-dimensional evaluation of the mutual position of stent and vessel via intracoronary echocardiography. In: Computers in Cardiology, pp. 261–264 (1999)
Dijkstra, J., Koning, G., Tuinenburg, J., Reiber, P.O.J.: Automatic border detection in intravascular iltrasound images for quantitative measurements of the vessel, lumen and stent parameters. Computers in Cardiology 28, 25–28 (2001)
Dijkstra, J., Koning, G.: P.V., J.T., Reiber, O.J.: Automatic stent border detection in intravascular ultrasound images. In: CARS, pp. 1111–1116 (2003)
Rotger, D., Radeva, P., Bruining, N.: Automatic detection of bioabsorbable coronary stents in ivus images using a cascade of classifiers. IEEE Transactions on Information Technology in Biomedicine 14(2), 535–537 (2010)
Hua, R., Pujol, O., Ciompi, F., Balocco, S., Alberti, M., Mauri, F., Radeva, P.: Stent strut detection by classifying a wide set of ivus features. In: MICCAI Workshop on Computer Assisted Stenting (2012)
Ciompi, F., Pujol, O., Gatta, C., Alberti, M., Balocco, S., Carrillo, X., Mauri-Ferre, J., Radeva, P.: Holimab: A holistic approach for media-adventitia border detection in intravascular ultrasounds. Medical Image Analysis 16, 1085–1100 (2012)
Balocco, S., Gatta, C., Ciompi, F., Pujol, O., Carrillo, X., Mauri, J., Radeva, P.: Combining growcut and temporal correlation for ivus lumen segmentation. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 556–563. Springer, Heidelberg (2011)
Gatta, C., Balocco, S., Ciompi, F., Hemetsberger, R., Leor, O.R., Radeva, P.: Real-time gating of ivus sequences based on motion blur analysis: Method and quantitative validation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 59–67. Springer, Heidelberg (2010)
Gatta, C., Puertas, E., Pujol, O.: Multi-scale stacked sequential learning. Pattern Recognition 44(10-11), 2414–2426 (2011)
Puertas, E., Escalera, S., Pujol, O.: Multi-class multi-scale stacked sequential learning. In: Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011. LNCS, vol. 6713, pp. 197–206. Springer, Heidelberg (2011)
Schapire, R.: The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA, USA (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ciompi, F. et al. (2013). Learning to Detect Stent Struts in Intravascular Ultrasound. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_68
Download citation
DOI: https://doi.org/10.1007/978-3-642-38628-2_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38627-5
Online ISBN: 978-3-642-38628-2
eBook Packages: Computer ScienceComputer Science (R0)