[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Symbiosis of Interval Constraint Propagation and Cylindrical Algebraic Decomposition

  • Conference paper
Automated Deduction – CADE-24 (CADE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7898))

Included in the following conference series:

Abstract

We present a novel decision procedure for non-linear real arithmetic: a combination of iSAT, an incomplete SMT solver based on interval constraint propagation (ICP), and an implementation of the complete cylindrical algebraic decomposition (CAD) method in the library GiNaCRA . While iSAT is efficient in finding unsatisfiability, on satisfiable instances it often terminates with an interval box whose satisfiability status is unknown to iSAT. The CAD method, in turn, always terminates with a satisfiability result. However, it has to traverse a double-exponentially large search space.

A symbiosis of iSAT and CAD combines the advantages of both methods resulting in a fast and complete solver. In particular, the interval box determined by iSAT provides precious extra information to guide the CAD-method search routine: We use the interval box to prune the CAD search space in both phases, the projection and the construction phase, forming a search “tube” rather than a search tree. This proves to be particularly beneficial for a CAD implementation designed to search a satisfying assignment pointedly, as opposed to search and exclude conflicting regions.

This work has been partially supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “AVACS” (SFB/TR 14, http://www.avacs.org/ and the Research Training Group “AlgoSyn” (GRK 1298, http://www.algosyn.rwth-aachen.de/ )

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anai, H., Yokoyama, K.: Cylindrical algebraic decomposition via numerical computation with validated symbolic reconstruction. In: Algorithmic Algebra and Logic, pp. 25–30 (2005)

    Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer (2010)

    Google Scholar 

  3. Benhamou, F., Granvilliers, L.: Continuous and Interval Constraints. In: Handbook of Constraint Programming, pp. 571–603. Foundations of Artificial Intelligence (2006)

    Google Scholar 

  4. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 118–149 (2003)

    Article  Google Scholar 

  5. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weidenbach, C.: Superposition modulo non-linear arithmetic. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 119–134. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling, and Computation 1(3-4), 209–236 (2007)

    Google Scholar 

  10. Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: ISSAC 1990, pp. 261–264. ACM (1990)

    Google Scholar 

  11. Iwane, H., Yanami, H., Anai, H.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for optimization problems. In: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, pp. 168–177. ACM (2012)

    Google Scholar 

  12. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science. Springer (1993)

    Google Scholar 

  14. Ratschan, S.: Approximate quantified constraint solving by cylindrical box decomposition. Reliable Computing 8(1), 21–42 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Silva, J.P.M., Sakallah, K.A.: Grasp - a new search algorithm for satisfiability. In: ICCAD, pp. 220–227 (1996)

    Google Scholar 

  16. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Computation 41(9), 1021–1038 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tseitin, G.S.: On the complexity of derivations in propositional calculus. In: Slisenko, A. (ed.) Studies in q(1968)

    Google Scholar 

  18. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1-2), 3–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B. (2013). A Symbiosis of Interval Constraint Propagation and Cylindrical Algebraic Decomposition. In: Bonacina, M.P. (eds) Automated Deduction – CADE-24. CADE 2013. Lecture Notes in Computer Science(), vol 7898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38574-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38574-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38573-5

  • Online ISBN: 978-3-642-38574-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics