Abstract
We consider several variations of the problems of covering a set of barriers (modeled as line segments) using sensors that can detect any intruder crossing any of the barriers. Sensors are initially located in the plane and they can relocate to the barriers. We assume that each sensor can detect any intruder in a circular area centered at the sensor. Given a set of barriers and a set of sensors located in the plane, we study three problems: the feasibility of barrier coverage, the problem of minimizing the largest relocation distance of a sensor (MinMax), and the problem of minimizing the sum of relocation distances of sensors (MinSum). When sensors are permitted to move to arbitrary positions on the barrier, the problems are shown to be NP-complete. We also study the case when sensors use perpendicular movement to one of the barriers. We show that when the barriers are parallel, both the MinMax and MinSum problems can be solved in polynomial time. In contrast, we show that even the feasibility problem is NP-complete if two perpendicular barriers are to be covered, even if the sensors are located at integer positions, and have only two possible sensing ranges. On the other hand, we give an O(n 3/2) algorithm for a natural special case of this last problem.
Supported by VEGA 2/0136/12, NSERC Discovery, and SEP-CONACYT grants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: Proceedings of MobiCom 2007, pp. 75–86 (2007)
Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theoretical Computer Science 410(52), 5515–5528 (2009)
Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012)
Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009)
Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)
Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1987)
Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. In: Proceedings of WSNA, pp. 115–121 (2003)
Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of MobiCom 2005, pp. 284–298 (2005)
Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage problems in wireless ad-hoc sensor networks. In: Proceedings of INFOCOM 2001, vol. 3, pp. 1380–1387 (2001)
Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers. In: Proceedings of IEEE WCNC 2011, pp. 1464–1469 (2011)
Yan, G., Qiao, D.: Multi-round sensor deployment for guaranteed barrier coverage. In: Proceedings of IEEE INFOCOM 2010, pp. 2462–2470 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dobrev, S. et al. (2013). Complexity of Barrier Coverage with Relocatable Sensors in the Plane. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-38233-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38232-1
Online ISBN: 978-3-642-38233-8
eBook Packages: Computer ScienceComputer Science (R0)