[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Determinization of Grammar Programs for Program Inversion

  • Conference paper
Logic-Based Program Synthesis and Transformation (LOPSTR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7844))

  • 382 Accesses

Abstract

The inversion method proposed by Glück and Kawabe uses grammar programs as intermediate results that comprise sequences of operations (data generation, matching, etc.). The determinization method used in the inversion method fails for a grammar program of which the collection of item sets causes a conflict even if there exists a deterministic program equivalent to the grammar program. In this paper, by ignoring shift/shift conflicts, we improve the determinization method so as to cover grammar programs causing shift/shift conflicts. Moreover, we propose a method to eliminate infeasible definitions from unfolded grammar programs and show that the method succeeds in determinizing some grammar programs for which the original method fails. By using the method as a post-process of the original inversion method, we make the original method strictly more powerful.

This work has been partially supported by MEXT KAKENHI #21700011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 32.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 41.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramov, S.M., Glück, R.: Principles of inverse computation in a functional language. In: APLAS 2000, pp. 141–152 (2000)

    Google Scholar 

  2. Abramov, S., Glück, R.: The universal resolving algorithm: Inverse computation in a functional language. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 187–212. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Abramov, S.M., Glück, R.: The universal resolving algorithm and its correctness: inverse computation in a functional language. Sci. Comput. Program. 43(2-3), 193–229 (2002)

    Article  MATH  Google Scholar 

  4. Almendros-Jiménez, J.M., Vidal, G.: Automatic partial inversion of inductively sequential functions. In: Horváth, Z., Zsók, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 253–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Dershowitz, N., Mitra, S.: Jeopardy. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 16–29. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Glück, R., Kawabe, M.: A program inverter for a functional language with equality and constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 246–264. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0) parsing. Fundam. Inform. 66(4), 367–395 (2005)

    MATH  Google Scholar 

  9. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for Lisp. SIGPLAN Notices 40(5), 8–17 (2005)

    Article  Google Scholar 

  10. Glück, R., Kawada, Y., Hashimoto, T.: Transforming interpreters into inverse interpreters by partial evaluation. In: Proceedings of Partial Evaluation and Semantics-based Program Manipulation, pp. 10–19. ACM Press (2003)

    Google Scholar 

  11. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)

    Book  MATH  Google Scholar 

  12. Harrison, P.G.: Function inversion. In: Proceedings of the IFIP TC2 Workshop on Partial Evaluation and Mixed Computation, pp. 153–166. North-Holland (1988)

    Google Scholar 

  13. Harrison, P.G., Khoshnevisan, H.: On the synthesis of function inverses. Acta Inf. 29(3), 211–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hullot, J.M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)

    Google Scholar 

  15. Kawabe, M., Futamura, Y.: Case studies with an automatic program inversion system. In: Proceedings of the 21st Conference of Japan Society for Software Science and Technology, 6C-3, pp. 1–5 (2004)

    Google Scholar 

  16. Kawabe, M., Glück, R.: The program inverter LRinv and its structure. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 219–234. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Khoshnevisan, H., Sephton, K.M.: InvX: An automatic function inverter. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 564–568. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  18. Korf, R.E.: Inversion of applicative programs. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 1007–1009. William Kaufmann (1981)

    Google Scholar 

  19. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005)

    Article  MATH  Google Scholar 

  20. Matsuda, K., Mu, S.-C., Hu, Z., Takeichi, M.: A grammar-based approach to invertible programs. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 448–467. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. McCarthy, J.: The inversion of functions defined by Turing machines. In: Automata Studies, pp. 177–181. Princeton University Press (1956)

    Google Scholar 

  22. Nagashima, M., Sakai, M., Sakabe, T.: Determinization of conditional term rewriting systems. Theor. Comput. Sci. 464, 72–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nishida, N., Sakai, M.: Completion after program inversion of injective functions. In: Proceedings of the 8th International Workshop on Reduction Strategies in Rewriting and Programming. ENTCS, vol. 237, pp. 39–56 (2009)

    Google Scholar 

  24. Nishida, N., Sakai, M., Sakabe, T.: Generation of inverse computation programs of constructor term rewriting systems. The IEICE Trans. Inf. & Syst. J88-D-I(8), 1171–1183 (2005) (in Japanese)

    Google Scholar 

  25. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Nishida, N., Sakai, M., Sakabe, T.: Soundness of unravelings for conditional term rewriting systems via ultra-properties related to linearity. Logical Methods in Computer Science 8(3), 1–49 (2012)

    MathSciNet  Google Scholar 

  27. Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10, pp. 283–298. Schloß Dagstuhl–Leibniz-Zentrum für Informatik (2011)

    Google Scholar 

  28. Nishida, N., Vidal, G.: Computing more specific versions of conditional rewriting systems. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 137–154. Springer, Heidelberg (2013)

    Google Scholar 

  29. Ohlebusch, E.: Advanced topics in term rewriting. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  30. Romanenko, A.: The generation of inverse functions in Refal. In: Proceedings of the IFIP TC2 Workshop on Partial Evaluation and Mixed Computation, pp. 427–444. North-Holland (1988)

    Google Scholar 

  31. Romanenko, A.: Inversion and metacomputation. In: Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 12–22. ACM Press (1991)

    Google Scholar 

  32. Schernhammer, F., Gramlich, B.: VMTL–A modular termination laboratory. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 285–294. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  33. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated termination proofs for logic programs by term rewriting. ACM Trans. on Comput. Log. 11(1), 1–52 (2009)

    Article  MathSciNet  Google Scholar 

  34. Secher, J.P., Sørensen, M.H.: From checking to inference via driving and dag grammars. In: Proceedings of Partial Evaluation and Semantics-Based Program Manipulation, pp. 41–51. ACM Press (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niwa, M., Nishida, N., Sakai, M. (2013). Improving Determinization of Grammar Programs for Program Inversion. In: Albert, E. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2012. Lecture Notes in Computer Science, vol 7844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38197-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38197-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38196-6

  • Online ISBN: 978-3-642-38197-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics