[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ECOC Matrix Pruning Using Accuracy Information

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

Abstract

The target of ensemble pruning is to increase efficiency by reducing the ensemble size of a multi classifier system and thus computational and storage costs, without sacrificing and preferably enhancing the generalization performance. However, most state-of-the-art ensemble pruning methods are based on unweighted or weighted voting ensembles; and their extensions to the Error Correcting Output Coding (ECOC) framework is not strongly evident or successful. In this study, a novel strategy for pruning ECOC ensembles which is based on a novel accuracy measure is presented. The measure is defined by establishing the link between the accuracies of the two-class base classifiers in the context of the main multiclass problem. The results show that the method outperforms the ECOC extensions of the state-of-the-art pruning methods in the majority of cases and that it is even possible to improve the generalization performance by only using 30% of the initial ensemble size in certain scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. JMLR 1, 113–141 (2000)

    MathSciNet  Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms. J. Math. Model. Algorithms 5(4), 417–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. (JAIR) 2, 263–286 (1995)

    MATH  Google Scholar 

  7. Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A.: Statistical instance-based pruning in ensembles of independent classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 364–369 (2009)

    Article  Google Scholar 

  8. James, G., Hastie, T.: The error coding method and picts (1998)

    Google Scholar 

  9. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: International Conference on Machine Learning, pp. 211–218 (1997)

    Google Scholar 

  10. Martinez-Munoz, G., Hernandez-Lobato, D., Suarez, A.: An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 245–259 (2009)

    Article  Google Scholar 

  11. Martinez-Munoz, G., Suarez, A.: Aggregation ordering in bagging. In: Proc. of the IASTED ICAIA, pp. 258–263. Acta Press (2004)

    Google Scholar 

  12. Martinez-Munoz, G., Suarez, A.: Using boosting to prune bagging ensembles. Pattern Recognition Letters 28, 156–165 (2007)

    Article  Google Scholar 

  13. Soto, V., Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A.: A double pruning algorithm for classification ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 104–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Tsoumakas, G., Partalas, I., Vlahavas, I.: A taxonomy and short review of ensemble selection. In: ECAI 2008, Workshop SUEMA (2008)

    Google Scholar 

  15. Ulas, A., Yildiz, O.T., Alpaydin, E.: Cost-conscious comparison of supervised learning algorithms over multiple data sets. Pattern Recognition (2011)

    Google Scholar 

  16. Windeatt, T., Ghaderi, R.: Coding and decoding strategies for multi-class learning problems. Information Fusion 4(1), 11–21 (2003)

    Article  Google Scholar 

  17. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. JMLR 7, 1315–1338 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 1st edn. CRC Press, Boca Raton (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zor, C., Windeatt, T., Kittler, J. (2013). ECOC Matrix Pruning Using Accuracy Information. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics