Abstract
The target of ensemble pruning is to increase efficiency by reducing the ensemble size of a multi classifier system and thus computational and storage costs, without sacrificing and preferably enhancing the generalization performance. However, most state-of-the-art ensemble pruning methods are based on unweighted or weighted voting ensembles; and their extensions to the Error Correcting Output Coding (ECOC) framework is not strongly evident or successful. In this study, a novel strategy for pruning ECOC ensembles which is based on a novel accuracy measure is presented. The measure is defined by establishing the link between the accuracies of the two-class base classifiers in the context of the main multiclass problem. The results show that the method outperforms the ECOC extensions of the state-of-the-art pruning methods in the majority of cases and that it is even possible to improve the generalization performance by only using 30% of the initial ensemble size in certain scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. JMLR 1, 113–141 (2000)
Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms. J. Math. Model. Algorithms 5(4), 417–445 (2006)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. (JAIR) 2, 263–286 (1995)
Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A.: Statistical instance-based pruning in ensembles of independent classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 364–369 (2009)
James, G., Hastie, T.: The error coding method and picts (1998)
Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: International Conference on Machine Learning, pp. 211–218 (1997)
Martinez-Munoz, G., Hernandez-Lobato, D., Suarez, A.: An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 245–259 (2009)
Martinez-Munoz, G., Suarez, A.: Aggregation ordering in bagging. In: Proc. of the IASTED ICAIA, pp. 258–263. Acta Press (2004)
Martinez-Munoz, G., Suarez, A.: Using boosting to prune bagging ensembles. Pattern Recognition Letters 28, 156–165 (2007)
Soto, V., Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A.: A double pruning algorithm for classification ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 104–113. Springer, Heidelberg (2010)
Tsoumakas, G., Partalas, I., Vlahavas, I.: A taxonomy and short review of ensemble selection. In: ECAI 2008, Workshop SUEMA (2008)
Ulas, A., Yildiz, O.T., Alpaydin, E.: Cost-conscious comparison of supervised learning algorithms over multiple data sets. Pattern Recognition (2011)
Windeatt, T., Ghaderi, R.: Coding and decoding strategies for multi-class learning problems. Information Fusion 4(1), 11–21 (2003)
Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. JMLR 7, 1315–1338 (2006)
Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 1st edn. CRC Press, Boca Raton (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zor, C., Windeatt, T., Kittler, J. (2013). ECOC Matrix Pruning Using Accuracy Information. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-38067-9_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38066-2
Online ISBN: 978-3-642-38067-9
eBook Packages: Computer ScienceComputer Science (R0)