[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MRF-Based Multiple Classifier System for Hyperspectral Remote Sensing Image Classification

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

Abstract

Hyperspectral remote sensing image (HRSI) classification is a challenging problem because of its large amounts of spectral channels. Meanwhile, labeled samples for supervised classifier is very limited. The above two reasons often lead to unstable classification result and poor generalization capacity. Recent research has demonstrated the potential of multiple classifier system (MCS) for producing more accurate classification result. In addition, another vital aspect of HRSI classification is spatial contents. Markov random field (MRF), which takes the spatial dependence among neighborhood pixels based on the intensity field from observed data into consideration, is always adopted as an effective way to integrate the spatial information. In this paper, we proposed an effective framework for classifying HRSI image, called MRF-based MCS, which are based on the aforementioned two powerful algorithms. The proposed model is validated by multinomial logistic regression (MLR) classifier. Experimental results with hyperspectral images collected by the NASA Jet Propulsion Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) demonstrate that MRF-based MCS is a promising strategy in the context of hyperspectral image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benediktsson, J.A., Chanussot, J., Fauvel, M.: Multiple classifier systems in remote sensing: from basics to recent developments. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 501–512. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Chan, J.C., Paelinckx, D.: Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 112, 2999–3011 (2008)

    Article  Google Scholar 

  3. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. 67, 93–104 (2012)

    Article  Google Scholar 

  4. Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., Liu, S.: Multiple Classifier System for Remote Sensing Image Classification: A Review. Sensors 12, 4764–4792 (2012)

    Article  Google Scholar 

  5. Yoav, F., Robert, E.S.: Experiments with a New Boosting Algorithm. In: Proceedings of the Thirteenth International Conference Machine Learning, Bari, pp. 148–156 (1996)

    Google Scholar 

  6. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience (2004)

    Google Scholar 

  7. Foody, G.M., Boyd, D.S., Sanchez-Hernandez, C.: Mapping a specific class with an ensemble of classifiers. Int. J. Remote Sens. 28, 1733–1746 (2007)

    Article  Google Scholar 

  8. Doan, H.T.X., Foody, G.M.: Increasing soft classification accuracy through the use of an ensemble of classifiers. Int. J. Remote Sens. 28, 4609–4623 (2007)

    Article  Google Scholar 

  9. Velasco-Forero, S., Angulo, J.: Classification of hyperspectral images by tensor modeling and additive morphological decomposition. Pattern Recogn. 46, 566–577 (2012)

    Article  Google Scholar 

  10. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in Spectral-Spatial classification of hyperspectral images. Proc. IEEE (2012) (in press)

    Google Scholar 

  11. Farag, A., Mohamed, R., El-Baz, A.: A unified framework for map estimation in remote sensing image segmentation. IEEE Trans. Geosci. Remote Sens. 43, 1617–1634 (2005)

    Article  Google Scholar 

  12. Liu, D., Kelly, M., Gong, P.: A spatial-temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery. Remote Sens. Environ. 101, 167–180 (2006)

    Article  Google Scholar 

  13. Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM and MRF-Based Method for Accurate Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 7, 736–740 (2010)

    Article  Google Scholar 

  14. Li, J., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral Image Segmentation Using a New Bayesian Approach with Active Learning. IEEE Trans. Geosci. Remote Sens. 49, 3947–3960 (2011)

    Article  Google Scholar 

  15. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification. Image Vis. Comput. J. 19, 697–705 (2001)

    Article  Google Scholar 

  16. Bai, J., Xiang, S., Pan, C.: A Graph-Based Classification Method for Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 803-816, 2113–2118 (2013)

    Google Scholar 

  17. Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intel. 20, 1222–1239 (2001)

    Article  Google Scholar 

  18. Bagon, S.: Matlab Wrapper for Graph Cut (December 2006), http://www.wisdom.weizmann.ac.il/~bagon

  19. Tadjudin, S., Landgrebe, D.A.: Covariance estimation with limited training samples. IEEE Trans. Geosci. Remote Sens. 37, 2113–2118 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xia, J., Du, P., He, X. (2013). MRF-Based Multiple Classifier System for Hyperspectral Remote Sensing Image Classification. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics